Skip to main content

Design Optimization of Multi-objective Structural Engineering Problems Via Artificial Bee Colony Algorithm

  • Chapter
  • First Online:
Advances in Structural Engineering—Optimization

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 326))

Abstract

The construction sector constitutes a significant portion of global gross national expenditures with huge financial budget requirements and provides employment for more than one hundred million people. Besides, considering that people spend more than 80% of their time indoors today, it is necessary to make optimal structure designs. This requirement stems from the inadequacy of existing structures in the face of today's changing conditions. Indeed, realistic design optimization of the structures can be done not only by taking into account a single objective but also considering a number of structural criteria. It means that there is inherent multi-purpose in most structural design optimization problems. Thus, it is very difficult engineering task to solve these kinds of problems, as it is necessary to optimize multiple purposes simultaneously to obtain optimal designs. With the help of the improvisation in optimization techniques used for multi-objective structural engineering design, algorithms are provided to achieve the optimal designs by creating a strong synergy between the structural requirements and constraints mentioned in the design specifications. The recent addition to this trend is so-called Artificial Bee Colony (ABC) algorithm which simulates the nectar searching ability of the bees in nature for nutrition. In this chapter, an optimal design algorithm via ABC is proposed in order to obtain the optimum design of multi-objective structural engineering design problems. The applications in design examples have shown the robustness, effectiveness, and reliability of ABC in attaining the design optimization of multi-objective constrained structural engineering design problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zavala, G., Nebro, A.J., Luna, F., Coello Coello, C.A.: Structural design using multi-objective metaheuristics. Comparative study and application to a real-world problem. Struct. Multidiscip. Optim. 53, 545–566 (2016). https://doi.org/10.1007/s00158-015-1291-3.

  2. Zhou-Kangas, Y., Miettinen, K.: Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality. OR Spectr. 41, 391–413 (2019). https://doi.org/10.1007/s00291-018-0540-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Padhye, N., Deb, K.: Multi-objective optimisation and multi-criteria decision making in SLS using evolutionary approaches. Rapid Prototyp. J. 17, 458–478 (2011). https://doi.org/10.1108/13552541111184198

    Article  Google Scholar 

  4. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999). https://doi.org/10.1109/4235.797969

    Article  Google Scholar 

  5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Schoenauer, M., et al. (eds.) International Conference on Parallel Problem Solving from Nature, pp. 849–858. Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_83

  6. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Zurich (2001)

    Google Scholar 

  7. Coello Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8, 256–279 (2004). https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  8. Mirjalili, S., Jangir, P., Saremi, S.: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46, 79–95 (2017). https://doi.org/10.1007/s10489-016-0825-8

    Article  Google Scholar 

  9. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  10. Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H., Aljarah, I.: Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48, 805–820 (2018). https://doi.org/10.1007/s10489-017-1019-8

    Article  Google Scholar 

  11. Sadollah, A., Eskandar, H., Kim, J.H.: Water cycle algorithm for solving constrained multi-objective optimization problems. Appl. Soft Comput. J. 27, 279–298 (2015). https://doi.org/10.1016/j.asoc.2014.10.042

    Article  Google Scholar 

  12. Jangir, P., Indrajit Trivedi, N., Engineer, J., Rajya Vidyut Prasaran Nigam Losal-Sikar, R.: Non-dominated sorting moth flame optimizer: a novel multi-objective optimization algorithm for solving engineering design problems. Eng. Technol. Open. Acc. 2 (2018)

    Google Scholar 

  13. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007). https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  14. Carbas, S.: Optimum design of low-rise steel frames made of cold-formed thin-walled steel sections (2013)

    Google Scholar 

  15. Sonmez, M.: Artificial Bee Colony algorithm for optimization of truss structures. Appl. Soft Comput. J., pp. 2406–2418 (2011).https://doi.org/10.1016/j.asoc.2010.09.003

  16. Aydogdu, I., Carbas, S., Akin, A.: Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics. Steel Compos. Struct. 24 (2017). https://doi.org/10.12989/scs.2017.24.1.093

  17. De Weck, O.L.: Multiobjective optimization: history and promise. In: The Third China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems. Kanazawa (2004).

    Google Scholar 

  18. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  19. Deb, K.: Evolutionary algorithms for multi-criterion optimization in engineering design. Evol. Algorithms Eng. Comput. Sci. 8 (1999)

    Google Scholar 

  20. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction. , Kanpur (2011).

    Google Scholar 

  21. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications (1999)

    Google Scholar 

  22. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review (2003). https://doi.org/10.1109/TEVC.2003.810758

  23. Santana, R.A., Pontes, M.R., Bastos-Filho, C.J.A.: A multiple objective particle swarm optimization approach using crowding distance and roulette wheel. In: ISDA 2009—9th International Conference on Intelligent Systems Design and Applications, pp. 237–242 (2009). https://doi.org/10.1109/ISDA.2009.73.

  24. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8, 173–195 (2000)

    Article  Google Scholar 

  25. Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization (1995)

    Google Scholar 

  26. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 31, 61–85 (2009). https://doi.org/10.1007/s10462-009-9127-4

    Article  Google Scholar 

  27. Karaboga, D.: An idea based on Honey Bee swarm for numerical optimization. Kayseri (2005)

    Google Scholar 

  28. Karaboga, D.: Artificial bee colony algorithm. https://www.scholarpedia.org/article/Artificial_bee_colony_algorithm. Last accessed 3 May 2020

  29. Teodorović, D.: Bee colony optimization (BCO). Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04225-6_3

  30. Yilmaz Acar, Z., Aydemir, F., Basciftci, F.: A new multi-objective artificial bee colony algorithm for multi-onjective optimization problems. J. Selcuk. 144–152 (2018)

    Google Scholar 

  31. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  32. Saka, M.P., Carbas, S., Aydogdu, I., Akin, A.: Use of swarm intelligence in structural steel design optimization (2016). https://doi.org/10.1007/978-3-319-26245-1_3

  33. Saka, M.P., Carbas, S., Aydogdu, I., Akin, A., Geem, Z.W.: Comparative study on recent metaheuristic algorithms in design optimization of cold-formed steel structures (2015). https://doi.org/10.1007/978-3-319-18320-6_9

  34. Carbas, S.: Artificial Bee Colony Based optimum design of reticulated domes To LRFD-AISC. Int. J. Adv. Mech. Civ. Eng. 2, 68–74 (2015)

    Google Scholar 

  35. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191, 1245–1287 (2002). https://doi.org/10.1016/S0045-7825(01)00323-1

    Article  MathSciNet  MATH  Google Scholar 

  36. Hasançebi, O., Çarbaş, S., Doǧan, E., Erdal, F., Saka, M.P.: Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures. Comput. Struct. 87 (2009). https://doi.org/10.1016/j.compstruc.2009.01.002

  37. Hasançebi, O., Çarbaş, S., Doǧan, E., Erdal, F., Saka, M.P.: Comparison of non-deterministic search techniques in the optimum design of real size steel frames. Comput. Struct. 88 (2010). https://doi.org/10.1016/j.compstruc.2010.06.006

  38. Deb, K., Pratap, A., Moitra, S.: Mechanical component design for multiple objectives using elitist non-dominated sorting GA. In: Lecture Notes in Computer Science (LNCS), pp. 859–868. Springer, Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-45356-3_84

  39. Reddy, M.J., Kumar, D.N.: An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng. Optim. 39, 49–68 (2007). https://doi.org/10.1080/03052150600930493

    Article  MathSciNet  Google Scholar 

  40. Yang, B.S., Yeun, Y.S., Ruy, W.S.: Managing approximation models in multiobjective optimization. Struct. Multidiscip. Optim. 24, 141–156 (2002). https://doi.org/10.1007/s00158-002-0224-0

    Article  Google Scholar 

  41. Ray, T., Liew, K.M.: A swarm metaphor for multiobjective design optimization. Eng. Optim. 34, 141–153 (2002). https://doi.org/10.1080/03052150210915

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Carbas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carbas, S., Ustun, D., Toktas, A. (2021). Design Optimization of Multi-objective Structural Engineering Problems Via Artificial Bee Colony Algorithm. In: Nigdeli, S.M., Bekdaş, G., Kayabekir, A.E., Yucel, M. (eds) Advances in Structural Engineering—Optimization. Studies in Systems, Decision and Control, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-030-61848-3_3

Download citation

Publish with us

Policies and ethics