Skip to main content

On Symmetry and Initialization for Neural Networks

  • Conference paper
  • First Online:
LATIN 2020: Theoretical Informatics (LATIN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12118))

Included in the following conference series:

  • 590 Accesses

Abstract

This work provides an additional step in the theoretical understanding of neural networks. We consider neural networks with one hidden layer and show that when learning symmetric functions, one can choose initial conditions so that standard SGD training efficiently produces generalization guarantees. We empirically verify this and show that this does not hold when the initial conditions are chosen at random. The proof of convergence investigates the interaction between the two layers of the network. Our results highlight the importance of using symmetry in the design of neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A standard “lifting” that adds a coordinate with 1 to every vector allows to translate the affine case to the linear case.

References

  1. Abbe, E., Sandon, C.: Provable limitations of deep learning. arXiv e-prints p. 1812.06369 (2018)

    Google Scholar 

  2. Ajtai, M.: \(\sum ^1_1\)-formulae on finite structures. Ann. Pure Appl. Logic 24, 1–48 (1983)

    Article  MathSciNet  Google Scholar 

  3. Allen-Zhu, Z., Li, Y., Liang, Y.: Learning and generalization in overparameterized neural networks, going beyond two layers. arXiv e-prints p. 1811.04918 (2018)

    Google Scholar 

  4. Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-parameterization. arXiv e-prints p. 1811.03962 (2018)

    Google Scholar 

  5. Andoni, A., Panigrahy, R., Valiant, G., Zhang, L.: Learning polynomials with neural networks. In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference on Machine Learning. pp. 1908–1916 (2014)

    Google Scholar 

  6. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural networks with rectified linear units. arXiv e-prints p. 1611.01491 (2016)

    Google Scholar 

  7. Arora, S., Du, S.S., Hu, W., Li, Z., Wang, R.: Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. arXiv e-prints p. 1901.08584 (2019)

    Google Scholar 

  8. Arslanov, M.Z., Ashigaliev, D.U., Ismail, E.: N-bit parity ordered neural networks. Neurocomput. 48, 1053–1056 (2002)

    Article  Google Scholar 

  9. Arslanov, M., Amirgalieva, Z.E., Kenshimov, C.A.: N-bit parity neural networks with minimum number of threshold neurons. Open Eng. 6, 309–313 (2016)

    Article  Google Scholar 

  10. Bartlett, P., Foster, D.J., Telgarsky, M.: Spectrally-normalized margin bounds for neural networks. arXiv e-prints p. 1706.08498 (2017)

    Google Scholar 

  11. Brutzkus, A., Globerson, A., Malach, E., Shalev-Shwartz, S.: SGD learns over-parameterized networks that provably generalize on linearly separable data. arXiv e-prints p. 1710.10174 (2018)

    Google Scholar 

  12. Chizat, L., Bach, F.: A note on lazy training in supervised differentiable programming. arXiv e-prints p. 1812.07956 (2018)

    Google Scholar 

  13. Cohen, T.S., Welling, M.: Group equivariant convolutional networks. arXiv e-prints p. 1602.07576 (2016)

    Google Scholar 

  14. Collobert, R., Bengio, S.: Links between perceptrons. In: Proceedings of the 21st International Conference on Machine Learning. p. 23 (2004)

    Google Scholar 

  15. Daniely, A.: SGD learns the conjugate kernel class of the network. arXiv e-prints p. 1702.08503 (2017)

    Google Scholar 

  16. Du, S.S., Zhai, X., Póczos, B., Singh, A.: Gradient descent provably optimizes over-parameterized neural networks. arXiv e-prints p. 1810.02054 (2018)

    Google Scholar 

  17. Eldan, R., Shamir, O.: The power of depth for feedforward neural networks. In: Feldman, V., Rakhlin, A., Shamir, O. (eds.) Proceedings of the 29th Annual Conference on Learning Theory. Proceedings of Machine Learning Research, vol. 49, pp. 907–940. PMLR, Columbia University, New York, USA (2016)

    Google Scholar 

  18. Elsayed, G.F., Krishnan, D., Mobahi, H., Regan, K., Bengio, S.: Large margin deep networks for classification. arXiv e-prints p. 1803.05598 (2018)

    Google Scholar 

  19. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. In: Proceedings of the 22nd Symposium on the Foundations of Computer Science. pp. 260–270 (1981)

    Google Scholar 

  20. Gens, R., Domingos, P.M.: Deep symmetry networks. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, NIPS 2014, pp. 2537–2545 (2014)

    Google Scholar 

  21. Håstad, J.: Computational Limitations of Small-depth Circuits. MIT Press, United States (1987)

    Google Scholar 

  22. Iyoda, E.M., Nobuhara, H., Hirota, K.: A solution for the n-bit parity problem using a single translated multiplicative neuron. Neural Process. Lett. 18, 233–238 (2003)

    Article  Google Scholar 

  23. Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: Convergence and generalization in neural networks. arXiv e-prints p. arXiv:1806.07572 (2018)

  24. Kearns, M.: Efficient noise-tolerant learning from statistical queries. J. ACM 45(6), 983–1006 (1998)

    Article  MathSciNet  Google Scholar 

  25. Krauth, W., Mezard, M.: Learning algorithms with optimal stability in neural networks. J. Phys. A: Math. General 20, L745–L752 (1987)

    Article  MathSciNet  Google Scholar 

  26. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  27. Li, Y., Liang, Y.: Learning overparameterized neural networks via stochastic gradient descent on structured data. arXiv e-prints p. 1808.01204 (2018)

    Google Scholar 

  28. Littlestone, N., Warmuth, M.K.: Relating data compression and learnability (1986), Unpublished manuscript, University of California Santa Cruz (1986)

    Google Scholar 

  29. Liu, W., Wen, Y., Yu, Z., Yang, M.M.: Large-margin softmax loss for convolutional neural networks. arXiv e-prints p. 1612.02295 (2016)

    Google Scholar 

  30. Minsky, M.L., Papert, S.A.: Perceptrons, Expanded edn. MIT Press, Cambridge, MA, USA (1988)

    MATH  Google Scholar 

  31. Moran, S., Nachum, I., Panasoff, I., Yehudayoff, A.: On the perceptron’s compression. arXiv e-prints p. 1806.05403 (2018)

    Google Scholar 

  32. Novikoff, A.B.J.: On convergence proofs on perceptrons. Proceedings of the Symposium on the Mathematical Theory of Automata. 12, 615–622 (1962)

    MathSciNet  Google Scholar 

  33. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems 20, pp. 1177–1184 (2008)

    Google Scholar 

  34. Romero, E., Alquezar, R.: Maximizing the margin with feedforward neural networks. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002. vol. 1, pp. 743–748 (2002)

    Google Scholar 

  35. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)

    Article  Google Scholar 

  36. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory to algorithms. Cambridge University Press (2014)

    Google Scholar 

  37. Shamir, O.: Distribution-specific hardness of learning neural networks. arXiv e-prints p. 1609.01037 (2016)

    Google Scholar 

  38. Sokolic, J., Giryes, R., Sapiro, G., Rodrigues, M.R.D.: Margin preservation of deep neural networks. arXiv e-prints p. 1605.08254v1 (2016)

    Google Scholar 

  39. Sokolic, J., Giryes, R., Sapiro, G., Rodrigues, M.R.D.: Robust large margin deep neural networks. IEEE Trans. Signal Process. 65, 4265–4280 (2017)

    Article  MathSciNet  Google Scholar 

  40. Song, L., Vempala, S., Wilmes, J., Xie, B.: On the complexity of learning neural networks. arXiv e-prints p. 1707.04615 (2017)

    Google Scholar 

  41. Soudry, D., Carmon, Y.: No bad local minima: Data independent training error guarantees for multilayer neural networks. arXiv e-prints p. 1605.08361 (2016)

    Google Scholar 

  42. Sun, S., Chen, W., Wang, L., Liu, T.Y.: Large margin deep neural networks: Theory and algorithms. arXiv e-prints p. 1506.05232 (2015)

    Google Scholar 

  43. Telgarsky, M.: Representation benefits of deep feedforward networks. arXiv e-prints p. 1509.08101 (2016)

    Google Scholar 

  44. Wilamowski, B., Hunter, D., Malinowski, A.: Solving parity-n problems with feedforward neural networks. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN. vol. 4, pp. 2546–2551 (2003)

    Google Scholar 

  45. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R., Smola, A.: Deep sets. In: Guyon, I., et al., (eds.) Advances in Neural Information Processing Systems 30, pp. 3391–3401 (2017)

    Google Scholar 

  46. Zou, D., Cao, Y., Zhou, D., Gu., Q.: Stochastic gradient descent optimizes over-parameterized deep relu networks. arXiv e-prints p. 1811.08888 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ido Nachum or Amir Yehudayoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nachum, I., Yehudayoff, A. (2020). On Symmetry and Initialization for Neural Networks. In: Kohayakawa, Y., Miyazawa, F.K. (eds) LATIN 2020: Theoretical Informatics. LATIN 2021. Lecture Notes in Computer Science(), vol 12118. Springer, Cham. https://doi.org/10.1007/978-3-030-61792-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61792-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61791-2

  • Online ISBN: 978-3-030-61792-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics