Skip to main content

Design and Prototyping of a Wearable Kinesthetic Haptic Feedback System to Support Mid-Air Interactions in Virtual Environments

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2020)

Abstract

This paper focuses on the study of mid-air gestural interaction and haptic means of immersion in virtual environments to design a wearable kinesthetic feedback system based on vibro-tactile feedback mechanisms. The paper gives special attention to the design and prototyping of the wearable system and the use of low-cost optical hand tracking devices. The complete implementation of the system is comprised of a motion tracking sensor, used to identify and monitor the user’s hand position and gestures, and a wearable device based on low-cost microcontroller technologies and vibration motors for producing the haptic rendering. The wearable device is mounted on the user’s hand (fingers, palm and wrist), with the aim of producing feedback in real time when interacting with virtual objects in virtual environments. In this paper we present the design of the wearable kinesthetic feedback system, the implementation of the haptic rendering mechanisms and a preliminary evaluation of its usability from a user experience perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attwenger, A.: Advantages and Drawbacks of Gesture-Based Interaction. Grin Verlag (2017)

    Google Scholar 

  2. Bruder, G., Steinicke, F., Sturzlinger, W.: To touch or not to touch? Comparing 2D touch and 3D mid-air interaction on stereoscopic tabletop surfaces. In: Proceedings of the 1st Symposium on Spatial User Interaction. pp. 9–16. ACM, New York (2013). https://doi.org/10.1145/2491367.2491369

  3. Spano, L.D.: Developing touchless interfaces with GestIT. In: Paternò, F., de Ruyter, B., Markopoulos, P., Santoro, C., van Loenen, E., Luyten, K. (eds.) AmI 2012. LNCS, vol. 7683, pp. 433–438. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34898-3_39

    Chapter  Google Scholar 

  4. Nguyen, V.T.: Enhancing touchless interaction with the leap motion using a haptic glove. Comput. Sci. (2014)

    Google Scholar 

  5. O’hara, K., Harper, R., Mentis, H., Sellen, A., Taylor, A.: On the naturalness of touchless: putting the “interaction” back into NUI. ACM Trans. Comput. Hum. Interact. (TOCHI) 20, 25 (2013)

    Google Scholar 

  6. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429 (2002)

    Article  Google Scholar 

  7. Ernst, M.O., Banks, M.S., Bülthoff, H.H.: Touch can change visual slant perception. Nat. Neurosci. 3, 69 (2000)

    Article  Google Scholar 

  8. Ernst, M.O., Bülthoff, H.H.: Merging the senses into a robust percept. Trends Cogn. Sci. 8, 162–169 (2004)

    Article  Google Scholar 

  9. Gepshtein, S., Burge, J., Ernst, M.O., Banks, M.S.: The combination of vision and touch depends on spatial proximity. J. Vis. 5, 7 (2005)

    Article  Google Scholar 

  10. Lin, M.C., Otaduy, M.: Haptic Rendering: Foundations, Algorithms, and Applications. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  11. Maereg, A.T., Nagar, A., Reid, D., Secco, E.L.: Wearable vibrotactile haptic device for stiffness discrimination during virtual interactions. Front. Robot. AI 4, 42 (2017). https://doi.org/10.3389/frobt.2017.00042

    Article  Google Scholar 

  12. Fogtmann, M.H., Fritsch, J., Kortbek, K.J.: Kinesthetic interaction: revealing the bodily potential in interaction design. In: Proceedings of the 20th Australasian Conference on Computer-Human Interaction: Designing for Habitus and Habitat, pp. 89–96. ACM, New York (2008). https://doi.org/10.1145/1517744.1517770

  13. de la Barré, R., Chojecki, P., Leiner, U., Mühlbach, L., Ruschin, D.: Touchless interaction-novel chances and challenges. In: Jacko, J.A. (ed.) HCI 2009. LNCS, vol. 5611, pp. 161–169. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02577-8_18

    Chapter  Google Scholar 

  14. Vogiatzidakis, P., Koutsabasis, P.: Gesture elicitation studies for mid-air interaction: a review. MTI 2, 65 (2018). https://doi.org/10.3390/mti2040065

    Article  Google Scholar 

  15. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimed. 19, 4–10 (2012). https://doi.org/10.1109/MMUL.2012.24

    Article  Google Scholar 

  16. Carter, J., Fourney, D.: Research based tactile and haptic interaction guidelines. In: GOTHI 2005, p. 9 (2005)

    Google Scholar 

  17. Bicchi, A., Buss, M., Ernst, M.O., Peer, A. (eds.): The Sense of Touch and Its Rendering: Progress in Haptics Research. Springer Tracts in Advanced Robotics, vol. 45. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79035-8

    Book  Google Scholar 

  18. Salisbury, K., Conti, F., Barbagli, F.: Haptic rendering: introductory concepts. IEEE Comput. Graph. Appl. 24, 24–32 (2004). https://doi.org/10.1109/MCG.2004.1274058

    Article  Google Scholar 

  19. Freeman, E., Brewster, S., Lantz, V.: Tactile feedback for above-device gesture interfaces: adding touch to touchless interactions. In: Proceedings of the 16th International Conference on Multimodal Interaction, pp. 419–426. ACM, New York (2014). https://doi.org/10.1145/2663204.2663280

  20. Mazzoni, A., Bryan-Kinns, N.: Mood Glove: a haptic wearable prototype system to enhance mood music in film. Entertain. Comput. 17, 9–17 (2016). https://doi.org/10.1016/j.entcom.2016.06.002

    Article  Google Scholar 

  21. Feng, Y.-L., Fernando, C.L., Rod, J., Minamizawa, K.: Submerged haptics: a 3-DOF fingertip haptic display using miniature 3D printed airbags. In: ACM SIGGRAPH 2017 Emerging Technologies. pp. 22:1–22:2. ACM, New York (2017). https://doi.org/10.1145/3084822.3084835

  22. PowerClaw. https://vivoxie.com/en/powerclaw/index. Accessed 4 May 2020

  23. Kim, M., Jeon, C., Kim, J.: A study on immersion and presence of a portable hand haptic system for immersive virtual reality. Sensors 17, 1141 (2017). https://doi.org/10.3390/s17051141

    Article  Google Scholar 

  24. Carter, T., Seah, S.A., Long, B., Drinkwater, B., Subramanian, S.: UltraHaptics: multi-point mid-air haptic feedback for touch surfaces. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, pp. 505–514. ACM, New York (2013). https://doi.org/10.1145/2501988.2502018

  25. Goodwin, K.: Designing for the Digital Age: How to Create Human-Centered Products and Services. Wiley, Hoboken (2009)

    Google Scholar 

  26. Benyon, D.: Designing Interactive Systems: A Comprehensive Guide to HCI and Interaction Design. Pearson, Boston (2013)

    Google Scholar 

  27. Partheniadis, K., Stavrakis, M.: Design and evaluation of a digital wearable ring and a smartphone application to help monitor and manage the effects of Raynaud’s phenomenon. Multimed. Tools Appl. 78(3), 3365–3394 (2018). https://doi.org/10.1007/s11042-018-6514-3

    Article  Google Scholar 

  28. Kordatos, G., Stavrakis, M.: Design and evaluation of a wearable system to increase adherence to rehabilitation programmes in acute cruciate ligament (CL) rupture. Multimed. Tools Appl. (2019). https://doi.org/10.1007/s11042-019-08502-3

  29. Vosinakis, S., Koutsabasis, P., Makris, D., Sagia, E.: A kinesthetic approach to digital heritage using leap motion: the cycladic sculpture application. In: 2016 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), pp. 1–8. IEEE (2016). https://doi.org/10.1109/VS-GAMES.2016.7590334

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Modestos Stavrakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sagia, E.E.M., Stavrakis, M. (2020). Design and Prototyping of a Wearable Kinesthetic Haptic Feedback System to Support Mid-Air Interactions in Virtual Environments. In: Florez, H., Misra, S. (eds) Applied Informatics. ICAI 2020. Communications in Computer and Information Science, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-61702-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61702-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61701-1

  • Online ISBN: 978-3-030-61702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics