Skip to main content

Dendritic Computation in a Point Neuron Model

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12397))

Included in the following conference series:

Abstract

Biological neurons possess elaborate dendrites that perform elaborate computations. They are however ignored in the widely used point neuron models. Here, we present a simple addition to the commonly used leaky integrate-and-fire model that introduces the concept of a dendrite. All synapses on the dendrite have a mutual relationship. The result is a form of short term plasticity in which synapse strengths are influenced by recent activity in other synapses. This improves the ability of the neuron to recognize temporal sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anselmi, F., Ventalon, C., Bègue, A., Ogden, D., Emiliani, V.: Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proc. Nat. Acad. Sci. 108(49), 19504–19509 (2011)

    Article  Google Scholar 

  2. Bittner, K.C., Milstein, A.D., Grienberger, C., Romani, S., Magee, J.C.: Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357(6355), 1033–1036 (2017)

    Article  Google Scholar 

  3. Branco, T., Clark, B.A., Häusser, M.: Dendritic discrimination of temporal input sequences in cortical neurons. Science 329(5999), 1671–1675 (2010)

    Article  Google Scholar 

  4. Ferré, P., Mamalet, F., Thorpe, S.J.: Unsupervised feature learning with winner-takes-all based STDP. Front. Comput. Neurosci. 12, 24 (2018)

    Article  Google Scholar 

  5. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982). https://doi.org/10.1007/BF00337288

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, S., Liu, N., Zhang, X., McLaughlin, D.W., Zhou, D., Cai, D.: Dendritic computations captured by an effective point neuron model. Proc. Nat. Acad. Sci. 116(30), 15244–15252 (2019)

    Article  Google Scholar 

  7. Masquelier, T., Guyonneau, R., Thorpe, S.J.: Competitive STDP-based spike pattern learning. Neural Comput. 21(5), 1259–1276 (2009)

    Article  Google Scholar 

  8. Packer, A.M., Peterka, D.S., Hirtz, J.J., Prakash, R., Deisseroth, K., Yuste, R.: Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9(12), 1202 (2012)

    Article  Google Scholar 

  9. Packer, A.M., Roska, B., Häusser, M.: Targeting neurons and photons for optogenetics. Nat. Neurosci. 16(7), 805 (2013)

    Article  Google Scholar 

  10. Schmidt-Hieber, C., et al.: Active dendritic integration as a mechanism for robust and precise grid cell firing. Nat. Neurosci. 20(8), 1114 (2017)

    Article  Google Scholar 

  11. Stuart, G.J., Sakmann, B.: Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367(6458), 69–72 (1994)

    Article  Google Scholar 

  12. Takahashi, N., Oertner, T.G., Hegemann, P., Larkum, M.E.: Active cortical dendrites modulate perception. Science 354(6319), 1587–1590 (2016)

    Article  Google Scholar 

  13. Wang, S.S.H., Denk, W., Häusser, M.: Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci. 3(12), 1266–1273 (2000)

    Article  Google Scholar 

Download references

Acknowledgment

This research has received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vandesompele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vandesompele, A., Wyffels, F., Dambre, J. (2020). Dendritic Computation in a Point Neuron Model. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12397. Springer, Cham. https://doi.org/10.1007/978-3-030-61616-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61616-8_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61615-1

  • Online ISBN: 978-3-030-61616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics