Skip to main content

On Aggregation in Ensembles of Multilabel Classifiers

  • Conference paper
  • First Online:
Discovery Science (DS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12323))

Included in the following conference series:

Abstract

While a variety of ensemble methods for multilabel classification have been proposed in the literature, the question of how to aggregate the predictions of the individual members of the ensemble has received little attention so far. In this paper, we introduce a formal framework of ensemble multilabel classification, in which we distinguish two principal approaches: “predict then combine” (PTC), where the ensemble members first make loss minimizing predictions which are subsequently combined, and “combine then predict” (CTP), which first aggregates information such as marginal label probabilities from the individual ensemble members, and then derives a prediction from this aggregation. While both approaches generalize voting techniques commonly used for multilabel ensembles, they allow to explicitly take the target performance measure into account. Therefore, concrete instantiations of CTP and PTC can be tailored to concrete loss functions. Experimentally, we show that standard voting techniques are indeed outperformed by suitable instantiations of CTP and PTC, and provide some evidence that CTP performs well for decomposable loss functions, whereas PTC is the better choice for non-decomposable losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\llbracket \cdot \rrbracket \) is the indicator function, i.e., \(\llbracket A \rrbracket = 1\) if the predicate A is true and \(=0\) otherwise.

  2. 2.

    http://mulan.sourceforge.net/datasets.html. The source code will be available at https://github.com/nvlml/DS2020-EMLC.

References

  1. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  2. Cheng, W., Hüllermeier, E., Dembczyński, K.J.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning (ICML), pp. 279–286 (2010)

    Google Scholar 

  3. Dembczyński, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence and loss minimization in multi-label classification. Mach. Learn. 88, 5–45 (2012). https://doi.org/10.1007/s10994-012-5285-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Dembczyński, K., Waegeman, W., Hüllermeier, E.: An analysis of chaining in multi-label classification. In: Proceedings of the 20th European Conference on Artificial Intelligence (ECAI), pp. 294–299. IOS Press (2012)

    Google Scholar 

  5. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  6. Gharroudi, O.: Ensemble multi-label learning in supervised and semi-supervised settings. Ph.D. Thesis, Université de Lyon (2017)

    Google Scholar 

  7. Gharroudi, O., Elghazel, H., Aussem, A.: Ensemble multi-label classification: a comparative study on threshold selection and voting methods. In: Proceedings of the 27th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 377–384. IEEE Computer Society (2015)

    Google Scholar 

  8. Kocev, D., Vens, C., Struyf, J., Džeroski, S.: Ensembles of multi-objective decision trees. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 624–631. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_61

    Chapter  Google Scholar 

  9. Li, N., Zhou, Z.-H.: Selective ensemble of classifier chains. In: Zhou, Z.-H., Roli, F., Kittler, J. (eds.) MCS 2013. LNCS, vol. 7872, pp. 146–156. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38067-9_13

    Chapter  Google Scholar 

  10. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)

    Article  Google Scholar 

  11. Moyano, J.M., Gibaja, E.L., Cios, K.J., Ventura, S.: Review of ensembles of multi-label classifiers: models, experimental study and prospects. Inf. Fusion 44, 33–45 (2018)

    Article  Google Scholar 

  12. Murthy, S.K.: Automatic construction of decision trees from data: A multi-disciplinary survey. Data Min. Knowl. Disc. 2(4), 345–389 (1998). https://doi.org/10.1023/A:1009744630224

    Article  Google Scholar 

  13. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1007/BF00116251

    Article  Google Scholar 

  14. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS (LNAI), vol. 5782, pp. 254–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04174-7_17

    Chapter  Google Scholar 

  15. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333 (2011)

    Article  MathSciNet  Google Scholar 

  16. Saha, S., Sarkar, D., Kramer, S.: Exploring multi-objective optimization for multi-label classifier ensembles. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 2753–2760. IEEE, Wellington (2019)

    Google Scholar 

  17. Shi, C., Kong, X., Fu, D., Yu, P.S., Wu, B.: Multi-label classification based on multi-objective optimization. ACM Trans. Intell. Syst. Technol. 5(2), 1–22 (2014)

    Article  Google Scholar 

  18. Shi, C., Kong, X., Yu, P.S., Wang, B.: Multi-label ensemble learning. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6913, pp. 223–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23808-6_15

    Chapter  Google Scholar 

  19. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38

    Chapter  Google Scholar 

  20. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-09823-4_34

  21. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2010)

    Article  Google Scholar 

  22. Waegeman, W., Dembczyńki, K., Jachnik, A., Cheng, W., Hüllermeier, E.: On the Bayes-optimality of F-measure maximizers. J. Mach. Learn. Res. 15(1), 3333–3388 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) under grant number 400845550.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vu-Linh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, VL., Hüllermeier, E., Rapp, M., Loza Mencía, E., Fürnkranz, J. (2020). On Aggregation in Ensembles of Multilabel Classifiers. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds) Discovery Science. DS 2020. Lecture Notes in Computer Science(), vol 12323. Springer, Cham. https://doi.org/10.1007/978-3-030-61527-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61527-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61526-0

  • Online ISBN: 978-3-030-61527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics