Skip to main content

The Non-isentropic Relativistic Euler System Written in a Symmetric Hyperbolic Form

  • Conference paper
  • First Online:
Anomalies in Partial Differential Equations

Part of the book series: Springer INdAM Series ((SINDAMS,volume 43))

  • 499 Accesses

Abstract

We cast the non-isentropic relativistic Euler system into a symmetric hyperbolic form. Such systems are very suited to treat initial value problems of hyperbolic type. We obtain this form by using the pressure p and not the density ρ as a variable. However, the system becomes degenerate when the pressure p approaches zero, and in these cases we regularise the system by replacing the pressure with an appropriate new matter variable, the Makino variable.

This paper is dedicated to our friend Michael Reissig

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brauer, U., Karp, L.: Well-posedness of the Einstein–Euler system in asymptotically flat spacetimes: the constraint equations. J. Differ. Equ. 251, 1428–1446 (2011). http://de.arxiv.org/abs/0810.5045

    Article  MathSciNet  Google Scholar 

  2. Brauer, U., Karp, L.: Local existence of solutions of self gravitating relativistic perfect fluids. Commun. Math. Phys. 325(1), 105–141 (2014). https://doi.org/10.1007/s00220-013-1854-3. MR 3182488

    Article  MathSciNet  Google Scholar 

  3. Choquet-Bruhat, Y.: Diagonalisation des systémes quasi-linéaires et hyperbolicité non stricte. J. Math. Pures Appl. (9) 45, 371–386 (1966). MR 0216131 (35 #6966)

    Google Scholar 

  4. Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford Mathematical Monographs. Oxford University Press, Oxford (2009). MR 2473363

    Google Scholar 

  5. Christodoulou, D.: Self-gravitating relativistic fluids: a two-phase model. Arch. Ration. Mech. Anal. 130(4), 343–400 (1995). https://doi.org/10.1007/BF00375144. MR 1346362

    Article  MathSciNet  Google Scholar 

  6. Christodoulou, D.: The Action Principle and Partial Differential Equations. Annals of Mathematics Studies, vol. 146, Princeton University Press, Princeton (2000). https://doi.org/10.1515/9781400882687. MR 1739321

  7. Disconzi, M.M.: Remarks on the Einstein–Euler-entropy system. Rev. Math. Phys. 27(6), 1550014 (2015). MR 3376953

    Google Scholar 

  8. Fourès-Bruhat, Y.: Théorèmes d’existence en mécanique des fluides relativistes. Bull. Soc. Math. France 86, 155–175 (1958). MR 105294

    Google Scholar 

  9. Friedrich, H.: Evolution equations for gravitating ideal fluid bodies in general relativity. Phys. Rev. D 57, 2317–2322 (1998)

    Article  MathSciNet  Google Scholar 

  10. Friedrich, H., Rendall, A.: The Cauchy Problem for the Einstein Equations. Einstein’s Field Equations and Their Physical Implications (L.N. in Phys, ed.), vol. 540, pp. 127–213. Springer, Berlin (2000)

    Google Scholar 

  11. Friedrichs, K.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math 7, 345–392 (1954)

    Article  MathSciNet  Google Scholar 

  12. Guo, Y., Tahvildar-Zadeh, A.S.: Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics. In: Nonlinear Partial Differential Equations (Evanston, IL, 1998). Contemporary Mathematics, vol. 238, pp. 151–161. American Mathematical Society, Providence (1999). https://doi.org/10.1090/conm/238/03545. MR 1724661

  13. Makino, T.: On a local existence theorem for the evolution equation of gaseous stars. In: Nishida, T., Mimura, M., Fujii, H. (eds.), Patterns and Waves, pp. 459–479. North-Holland, Amsterdam (1986)

    Google Scholar 

  14. Makino, T., Ukai, S.: Sur l’existence des solutions locales de l’équation d’Euler–Poisson pour l’évolution d’étoiles gazeuses. J. Math. Kyoto Univ. 27(3), 387–399 (1987). https://doi.org/10.1215/kjm/1250520654. MR 910225

    Article  MathSciNet  Google Scholar 

  15. Makino, T., Ukai, S., Kawashima, S.: Sur la solution à support compact de l’équaton d’euler compressible. Jpn. J. Appl. Math. 3, 249–257 (1986)

    Article  Google Scholar 

  16. Pichon, G.: Étude relativiste de fluides visqueux et chargés. Ann. Inst. H. Poincaré Sect. A (N.S.) 2, 21–85 (1965). MR 0204029

    Google Scholar 

  17. Rendall, A.D.: The initial value problem for a class of general relativistic fluid bodies. J. Math. Phys. 33(2), 1047–1053 (1992)

    Article  MathSciNet  Google Scholar 

  18. Smoller, J.: Shock waves and reaction–diffusion equations. Grundlehren der Mathematischen Wissenschaften, vol. 258. Springer, Heidelberg (1983)

    Google Scholar 

  19. Speck, J.: Well-posedness for the Euler–Nordström system with cosmological constant. J. Hyperbolic Differ. Equ. 6(2), 313–358 (2009). https://doi.org/10.1142/S0219891609001885. MR 2543324 (2011a:35529)

  20. Walton, R.: Symmetric hyperbolic Euler equations for relativistic perfect fluids (2005). Arxiv: astro-ph/0502233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavi Karp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brauer, U., Karp, L. (2021). The Non-isentropic Relativistic Euler System Written in a Symmetric Hyperbolic Form. In: Cicognani, M., Del Santo, D., Parmeggiani, A., Reissig, M. (eds) Anomalies in Partial Differential Equations. Springer INdAM Series, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-61346-4_3

Download citation

Publish with us

Policies and ethics