Skip to main content

Random Algebraic Lattices and Codes for Wireless Communications

  • Chapter
  • First Online:
Number Theory Meets Wireless Communications

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 369 Accesses

Abstract

In this chapter we will review classical and recent advances on “probabilistic” constructions for Euclidean lattices. We will then show recent refinements of these techniques using algebraic number theory. The interest in algebraic lattices is twofold: on the one hand, they are key elements for the construction of sphere packings with the best known asymptotic density; on the other hand, they provide effective solutions to a number of wireless communication problems. We will focus on applications to fading channels, multiple-input-multiple-output (MIMO) channels and to information-theoretic security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The square of this number is known as the Hermite constant.

  2. 2.

    Notice that in this part we consider complex lattices, since \(\mathbb {C}^T\) is the typical ambient space in applications to wireless. The results in the previous sections can be “adapted” to complex lattices in a natural way. For instance, a complex full-rank lattice in \(\mathbb {C}^T\) can be naturally identified with a lattice in \(\mathbb {R}^{n}\), for n = 2T.

References

  1. Belfiore, J., Oggier, F.: An error probability approach to MIMO wiretap channels 61(8), 3396–3403 (2013). https://doi.org/10.1109/TCOMM.2013.061913.120278

  2. Bellare, M., Tessaro, S., Vardy, A.: Semantic security for the wiretap channel. In: Proceedings of CRYPTO 2012. Lecture Notes in Computer Science, vol. 7417, pp. 294–311. Springer, Berlin (2012)

    Google Scholar 

  3. Blichfeldt, H.: The minimum values of positive quadratic forms in six, seven and eight variables. Math. Zeitsch. 39, 1–15 (1935). http://eudml.org/doc/168534

    Article  MathSciNet  MATH  Google Scholar 

  4. Campello, A.: Random ensembles of lattices from generalized reductions. IEEE Trans. Inf. Theory. 64(7), 5231–5239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Campello, A., Ling, C., Belfiore, J.C.: Algebraic lattice codes achieve the capacity of the compound block-fading channel. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 910–914 (2016). https://doi.org/10.1109/ISIT.2016.7541431

  6. Campello, A., Liu, L., Ling, C.: Multilevel code construction for compound fading channels. In: 2017 IEEE International Symposium on Information Theory (ISIT), pp. 1008–1012 (2017). https://doi.org/10.1109/ISIT.2017.8006680

  7. Cassels, J.W.S.: An Introduction to the Geometry of Numbers. Springer, Berlin (1997)

    MATH  Google Scholar 

  8. Conway, J.H., Sloane, N.J.A.: Sphere-Packings, Lattices, and Groups. Springer, New York (1998)

    Google Scholar 

  9. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gruber, P.: Convex and Discrete Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  11. Hlawka, E.: Zur geometrie der zahlen. Math. Zeitsch. 49, 285–312 (1943). http://eudml.org/doc/169025

    Article  MathSciNet  MATH  Google Scholar 

  12. Ling, C., Belfiore, J.C.: Achieving AWGN channel capacity with lattice gaussian coding. IEEE Trans. Inf. Theory 60(10), 5918–5929 (2014). https://doi.org/10.1109/TIT.2014.2332343

    Article  MathSciNet  MATH  Google Scholar 

  13. Ling, C., Luzzi, L., Belfiore, J.C., Stehle, D.: Semantically secure lattice codes for the Gaussian wiretap channel. IEEE Trans. Inf. Theory 60(10), 6399–6416 (2014). https://doi.org/10.1109/TIT.2014.2343226

    Article  MathSciNet  MATH  Google Scholar 

  14. Loeliger, H.A.: Averaging bounds for lattices and linear codes. IEEE Trans. Inf. Theory 43(6), 1767–1773 (1997). https://doi.org/10.1109/18.641543

    Article  MathSciNet  MATH  Google Scholar 

  15. Luzzi L., Vehkalahti, R.: Almost universal codes achieving ergodic MIMO capacity within a constant gap. IEEE Trans. Inf. Theory 63(5), 3224–3241 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Luzzi, L., Vehkalahti, R., Ling, C.: Almost universal codes for MIMO wiretap channels. IEEE Trans. Inf. Theory 64(11), 7218–7241 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ordentlich, O., Erez, U.: Precoded integer-forcing universally achieves the MIMO capacity to within a constant gap. IEEE Trans. Inf. Theory 61(1), 323–340 (2015). https://doi.org/10.1109/TIT.2014.2370047

    Article  MathSciNet  MATH  Google Scholar 

  18. Poltyrev, G.: On coding without restrictions for the AWGN channel. IEEE Trans. Inf. Theory 40, 409–417 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rogers, C.A.: Packing and Covering. Cambridge University Press, Cambridge (1964)

    MATH  Google Scholar 

  20. Rush, J.A.: A lower bound on packing density. Invent. Math. 98(3), 499–509 (1989). https://doi.org/10.1007/BF01393834

    Article  MathSciNet  MATH  Google Scholar 

  21. Schaefer, R.F., Loyka, S.: The secrecy capacity of compound Gaussian MIMO wiretap channels. IEEE Trans. Inf. Theory 61(10), 5535–5552 (2015). https://doi.org/10.1109/TIT.2015.2458856

    Article  MathSciNet  MATH  Google Scholar 

  22. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  23. Siegel, C.L.: A mean value theorem in geometry of numbers. Ann. Math. 46(2), 340–347 (1945). http://www.jstor.org/stable/1969027

    Article  MathSciNet  MATH  Google Scholar 

  24. Tse, D., Viswanath, P.: Fundamentals of Wireless Communication. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  25. Vance, S.: Improved sphere packing lower bounds from Hurwitz lattices. Adv. Math. 227(5), 2144–2156 (2011). https://doi.org/10.1016/j.aim.2011.04.016. http://www.sciencedirect.com/science/article/pii/S000187081100140X

  26. Venkatesh, A.: A note on sphere packings in high dimension. Int. Math. Res. Not. (2012). https://doi.org/10.1093/imrn/rns096. http://imrn.oxfordjournals.org/content/early/2012/03/07/imrn.rns096.abstract

  27. Liu, L., Yan, Y., Ling, C., Wu, X.: Construction of capacity-achieving lattice codes: Polar lattices. IEEE Trans. Commun. 67(2), 915–928 (2019)

    Article  Google Scholar 

  28. Zamir, R.: Lattice Coding for Signals and Networks. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Ling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Campello, A., Ling, C. (2020). Random Algebraic Lattices and Codes for Wireless Communications. In: Beresnevich, V., Burr, A., Nazer, B., Velani, S. (eds) Number Theory Meets Wireless Communications. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-61303-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61303-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61302-0

  • Online ISBN: 978-3-030-61303-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics