Skip to main content

On Fast-Decodable Algebraic Space–Time Codes

  • Chapter
  • First Online:
Number Theory Meets Wireless Communications

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 369 Accesses

Abstract

In the near future, the 5th generation (5G) of wireless systems will be well established. They will consist of an integration of different techniques, including distributed antenna systems and massive multiple-input multiple-output (MIMO) systems, and the overall performance will highly depend on the channel coding techniques employed. Due to the nature of future wireless networks, space–time codes are no longer merely an object of choice, but will often appear naturally in the communications setting. However, as the involved communication devices often exhibit a modest computational power, the complexity of the codes to be utilised should be reasonably low for possible practical implementation. Fast-decodable codes enjoy reduced complexity of maximum-likelihood (ML) decoding due to a smart inner structure allowing for parallelisation in the ML search. The complexity reductions considered in this chapter are entirely owing to the algebraic structure of the considered codes, and could be further improved by employing non-ML decoding methods, however yielding suboptimal performance. The aim of this chapter is twofold. First, we provide a tutorial introduction to space–time coding and study powerful algebraic tools for their design and construction. Secondly, we revisit algebraic techniques used for reducing the worst-case decoding complexity of both single-user and multiuser space-time codes, alongside with general code families and illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By discrete, we mean that the metric on \(\mathbb {R}^n\) defines the discrete topology on Λ, i.e., any bounded region of \(\mathbb {R}^n\) contains only finitely many points of the subgroup.

  2. 2.

    The practical reason behind this choice is that the popular modulation alphabets, referred to as pulse amplitude modulation (PAM) and quadrature amplitude modulation (QAM), correspond to the rings of integers of these fields.

  3. 3.

    The smallest Frobenius norms correspond to the shortest Euclidean norms of the vectorised matrices. Directly, this would mean spherical constellation shaping. However, it is often more practical to consider a slightly more relaxed cubic shaping. This is the case in particular when the lattice in question is orthogonal, as then the so-called Gray-mapping [13] will give an optimal bit labelling of the lattice points.

  4. 4.

    In the literature, the code rate is often defined in complex symbols per channel use. We prefer using real symbols, as not every code admits a Gaussian basis, while every lattice has a \(\mathbb {Z}\)-basis.

  5. 5.

    This is a usual trick to balance the average energies of the codeword entries more evenly. See [3, Ex. 1] for more details.

  6. 6.

    As remarked in Sect. 3.4.1, the property of fast decodability is independent of the channel. Hence, we omit details on the structure of the effective channel.

References

  1. Alamouti, S.: A simple transmitter diversity scheme for wireless communications. IEEE J. Sel. Areas Commun. 16(8), 1451–1458 (1998)

    Article  Google Scholar 

  2. Amani, E., Djouani, K., Kurien, A.: Low complexity decoding of the 4 × 4 perfect space–time block code. In: International Conference on Ambient Spaces, Networks and Technologies (2014)

    Google Scholar 

  3. Barreal, A., Hollanti, C., Markin, N.: Fast-decodable space–time codes for the n-relay and multiple-access MIMO channel. IEEE Trans. Wirel. Commun. 15(3), 1754–1767 (2016)

    Article  Google Scholar 

  4. Belfiore, J.-C., Rekaya, G.: Quaternionic lattices for space–time coding. In: Proceedings of the IEEE Information Theory Workshop (2003)

    Google Scholar 

  5. Belfiore, J-C., Rekaya, G., Viterbo, E.: The Golden code: a 2 × 2 full-rate space–time code with non-vanishing determinants. IEEE Trans. Inf. Theory 51(4), 1432–1436 (2005)

    Article  MATH  Google Scholar 

  6. Berhuy, G., Oggier, F.: An introduction to central simple algebras and their applications to wireless communication. In: Mathematical Surveys and Monographs. American Mathematical Society, New York (2013)

    Google Scholar 

  7. Berhuy, G., Markin, N., Sethuraman, B.A.: Fast lattice decodability of space–time block codes. In: Proceedings of the IEEE International Symposium on Information Theory (2014)

    Google Scholar 

  8. Berhuy, G., Markin, N., Sethuraman, B.A.: Bounds on fast decodability of space–time block codes, skew-Hermitian matrices, and Azumaya algebras. IEEE Trans. Inf. Theory 61(4), 1959–1970 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Biglieri, E., Hong, Y., Viterbo, E.: On fast-decodable space–time block codes. IEEE Trans. Inf. Theory 55(2), 524–530 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn.. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  11. Ebeling, W.: Lattices and Codes, 3rd edn. Spektrum, Heidelberg (2013)

    Book  MATH  Google Scholar 

  12. Elia, P., Sethuraman, B.A., Kumar, P.V.: Perfect space–time codes for any number of antennas. IEEE Trans. Inf. Theory 53(11), 3853–3868 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gray, F.: Pulse Code Communication (1953). US Patent 2,632,058

    Google Scholar 

  14. Hollanti, C., Lahtonen, J.: A new tool: Constructing STBCs from maximal orders in central simple algebras. In: Proceedings of the IEEE Information Theory Workshop (2006)

    Google Scholar 

  15. Hollanti, C., Lahtonen, J., Lu, H.f.: Maximal orders in the design of dense space–time lattice codes. IEEE Trans. Inf. Theory 54(10), 4493–4510 (2008)

    Google Scholar 

  16. Hollanti, C., Lahtonen, J., Ranto, K., Vehkalahti, R.: On the algebraic structure of the silver code: a 2 × 2 perfect space–time block code. In: Proceedings of the IEEE Information Theory Workshop (2008)

    Google Scholar 

  17. Howard, S.D., Sirianunpiboon, S., Calderbank, A.R.: Low complexity essentially maximum likelihood decoding of perfect space-time block codes. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (2009)

    Google Scholar 

  18. Jäämeri, E.: Tila-aikakoodien nopea pallodekoodaus (2016). Bachelor’s thesis

    Google Scholar 

  19. Jithamithra, G.R., Rajan, B.S.: A quadratic form approach to ML decoding complexity of STBCs. arXiv:1004.2844v2 (2010)

    Google Scholar 

  20. Jithamithra, G.R., Rajan, B.S.: Minimizing the complexity of fast sphere decoding of STBCs. IEEE Trans. Wirel. Commun. 12(12), 6142–6153 (2013)

    Article  Google Scholar 

  21. Jithamithra, G.R., Rajan, B.S.: Construction of block orthogonal STBCs and reducing their sphere decoding complexity. IEEE Trans. Wirel. Commun. 13(5), 2906–2919 (2014)

    Article  Google Scholar 

  22. Lu, H.f., Vehkalahti, R., Hollanti, C., Lahtonen, J., Hong, Y., Viterbo, E.: New space–time code constructions for two-user multiple access channels. IEEE J. Sel. Top. Sign. Proces. 3(6), 939–957 (2009)

    Google Scholar 

  23. Lu, H.f., Hollanti, C., Vehkalahti, R., Lahtonen, J.: DMT optimal codes constructions for multiple-access MIMO channel. IEEE Trans. Inf. Theory 57(6), 3594–3617 (2011)

    Google Scholar 

  24. Luzzi, L., Vehkalahti, R.: Almost universal codes achieving ergodic MIMO capacity within a constant gap. IEEE Trans. Inf. Theory 63(5) (2017)

    Google Scholar 

  25. Markin, N., Oggier, F.: Iterated space–time code constructions from cyclic algebras. IEEE Trans. Inf. Theory 59(9), 5966–5979 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mejri, A., Khsiba, M.-A., Rekaya, G.: Reduced-complexity ML decodable STBCs: Revisited design criteria. In: Proceedings of the International Symposium on Wireless Communication Systems (2015)

    Google Scholar 

  27. Milne, J.: Class Field Theory (2013). Graduate course notes, v4.02

    Google Scholar 

  28. Milne, J.: Algebraic Number Theory (2014). Graduate course notes, v2.0

    Google Scholar 

  29. Neukirch, J.: Algebraic Number Theory. Springer, Berlin (2010)

    MATH  Google Scholar 

  30. Oggier, F., Rekaya, G., Belfiore, J.-C., Viterbo, E.: Perfect space–time block codes. IEEE Trans. Inf. Theory 52(9), 3885–3902 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oggier, F., Viterbo, E., Belfiore, J.-C.: Cyclic Division Algebras: A Tool for Space-Time Coding, vol. 4(1). Foundations and Trends in Communications and Information Theory (2007)

    Google Scholar 

  32. Paredes, J.M., Gershman, A.B., Gharavi-Alkhansari, M.: A new full-rate full-diversity space–time block code with nonvanishing determinants and simplified maximum-likelihood decoding. IEEE Trans. Signal Process. 56(6) (2008)

    Google Scholar 

  33. Ren, T.P., Guan, Y.L., Yuen, C., Shen, R.J.: Fast-group-decodable space–time block code. In: Proceedings of the IEEE Information Theory Workshop (2010)

    Google Scholar 

  34. Sethuraman, B.A., Rajan, B.S., Shashidhar, V.: Full-diversity, high-rate space–time block codes from division algebras. IEEE Trans. Inf. Theory 49(10), 2596–2616 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sirinaunpiboon, S., Calderbank, A.R., Howard, S.D.: Fast essentially maximum likelihood decoding of the Golden code. IEEE Trans. Inf. Theory 57(6), 3537–3541 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Srinath, K.P., Rajan, B.S.: Low ML-decoding complexity, large coding gain, full-rate, full-diversity STBCs for 2 × 2 and 4 × 2 MIMO systems. IEEE J. Sel. Top. Sign. Proces. 3(6), 916–927 (2009)

    Article  Google Scholar 

  37. Srinath, K.P., Rajan, B.S.: Fast-decodable MIDO codes with large coding gain. IEEE Trans. Inf. Theory 60(2), 992–1007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tarokh, V., Seshadri, N., Calderbank, A.R.: Space–time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inf. Theory 44(2), 744–765 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vehkalahti, R., Hollanti, C., Lahtonen, J., Ranto, K.: On the densest MIMO lattices from cyclic division algebras. IEEE Trans. Inf. Theory 55(8), 3751–3780 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vehkalahti, R., Hollanti, C., Oggier, F.: Fast-decodable asymmetric space–time codes from division algebras. IEEE Trans. Inf. Theory 58(4), 2362–2385 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Viterbo, E., Boutros, J.: A universal lattice code decoder for fading channels. IEEE Trans. Inf. Theory 45(7), 1639–1642 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, S., Belfiore, J.-C.: Optimal space–time codes for the MIMO amplify-and-forward cooperative channel. IEEE Trans. Inf. Theory 53(2), 647–663 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zheng, L., Tse, D.: Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Trans. Inf. Theory 49(5), 1073–1096 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla Hollanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barreal, A., Hollanti, C. (2020). On Fast-Decodable Algebraic Space–Time Codes. In: Beresnevich, V., Burr, A., Nazer, B., Velani, S. (eds) Number Theory Meets Wireless Communications. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-61303-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61303-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61302-0

  • Online ISBN: 978-3-030-61303-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics