Skip to main content

Collecting and Reviewing Written Resources that Map the Knowledge Triangle for Transferring Research and Innovation on Sustainable Rehabilitation of the Built Environment in Continuing Education

  • Conference paper
  • First Online:
Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment (CRIT-RE-BUILT 2019)

Abstract

The aim of this study is to map an overview of the education, research and innovation on energy efficiency focused on the rehabilitation of the built environment. The research is organized as follows:

  • Introduction and contextualization on energy efficiency.

  • The main educational resources are depicted regarding (i) the educational levels on energy efficiency, (ii) the professional attributions, (iii) the role of energy manager and (iv) various examples of existing studies.

  • The main research and innovation challenges are presented considering (i) the role of Energy Service Providers (ESPs); (ii) Energy Conservation Measures (ECMs); climate adaption and adaptive comfort; (iv) heating, ventilation and air conditioning systems: adaptive setpoints; (v) mixed mode potential; (vi) Net Zero Energy buildings (NZEB); (vii) climate change and (viii) fuel poverty.

  • Conclusions of the educational, research and innovation challenges.

  • References including the citations in which the main text is supported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horne, R., Hayles, C.: Towards global benchmarking for sustainable homes: an international comparison of the energy performance of housing. J. Hous. Built. Environ. 23, 119–130 (2008). https://doi.org/10.1007/s10901-008-9105-1

    Article  Google Scholar 

  2. Kurtz, F., Monzón, M., López-Mesa, B.: Energy and acoustics related obsolescence of social housing of Spain’s post-war in less favoured urban areas. The case of Zaragoza. Inf la Construcción 67:m021 (2015). https://doi.org/10.3989/ic.14.062

  3. Lowe, R.: Technical options and strategies for decarbonizing UK housing. Build. Res. Inf. 35, 412–425 (2007). https://doi.org/10.1080/09613210701238268

    Article  Google Scholar 

  4. Park, K., Kim, M.: Energy demand reduction in the residential building sector: a case study of Korea. Energies 10, 1–11 (2017). https://doi.org/10.3390/en10101506

    Article  Google Scholar 

  5. The United Nations Environment Programme: Building Design and Construction: Forging Resource Efficiency and Sustainable, Nairobi, Kenya (2012)

    Google Scholar 

  6. European Commission: Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings, Brussels, Belgium (2002)

    Google Scholar 

  7. European Union: Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings, Brussels, Belgium (2010)

    Google Scholar 

  8. European Commission: A roadmap for moving to a competitive low carbon economy in 2050, Brussels, Belgium (2011)

    Google Scholar 

  9. European Union: Directive 2018/844 of the European parliament and of the council of 30 May 2018 amending directive 2010/31/EU on the energy performance of buildings and directive 2012/27/EU on energy efficiency (2018)

    Google Scholar 

  10. Shields, R.: The sustainability of international higher education: student mobility and global climate change. J. Clean. Prod. 217, 594–602 (2019). https://doi.org/10.1016/j.jclepro.2019.01.291

    Article  Google Scholar 

  11. Lozano, R., Barreiro-Gen, M., Lozano, F., Sammalisto, K.: Teaching sustainability in European higher education institutions: assessing the connections between competences and pedagogical approaches. Sustainability 11, 1602 (2019). https://doi.org/10.3390/su11061602

    Article  Google Scholar 

  12. De Lieto, V.R., Guattari, C., Evangelisti, L., et al.: Building energy performance analysis: a case study. Energy Build. 87, 87–94 (2015). https://doi.org/10.1016/j.enbuild.2014.10.080

    Article  Google Scholar 

  13. Escorcia, O., García, R., Trebilcock, M., et al.: Envelope improvements for energy efficiency of homes in the South-central Chile. Inf la Construcción 64, 563–574 (2012). https://doi.org/10.3989/ic.11.143

    Article  Google Scholar 

  14. Friedman, C., Becker, N., Erell, E.: Energy retrofit of residential building envelopes in Israel: a cost-benefit analysis. Energy 77, 183–193 (2014). https://doi.org/10.1016/j.energy.2014.06.019

    Article  Google Scholar 

  15. Pacheco, R., Ordóñez, J., Martínez, G.: Energy efficient design of building: a review. Renew. Sustain. Energy Rev. 16, 3559–3573 (2012). https://doi.org/10.1016/j.rser.2012.03.045

    Article  Google Scholar 

  16. Aksoy, U.T., Inalli, M.: Impacts of some building passive design parameters on heating demand for a cold region. Build. Environ. 41, 1742–1754 (2006). https://doi.org/10.1016/j.buildenv.2005.07.011

    Article  Google Scholar 

  17. Invidiata, A., Lavagna, M., Ghisi, E.: Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Build. Environ. 139, 58–68 (2018). https://doi.org/10.1016/j.buildenv.2018.04.041

    Article  Google Scholar 

  18. Bhikhoo, N., Hashemi, A., Cruickshank, H.: Improving thermal comfort of low-income housing in Thailand through passive design strategies. Sustain 9, 1–23 (2017). https://doi.org/10.3390/su9081440

    Article  Google Scholar 

  19. Rubel, F., Kottek, M.: Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol. Z. 19, 135–141 (2010). https://doi.org/10.1127/0941-2948/2010/0430

    Article  Google Scholar 

  20. Spyropoulos, G.N., Balaras, C.A.: Energy consumption and the potential of energy savings in Hellenic office buildings used as bank branches - a case study. Energy Build. 43, 770–778 (2011). https://doi.org/10.1016/j.enbuild.2010.12.015

    Article  Google Scholar 

  21. Rubio-Bellido, C., Pérez-Fargallo, A., Pulido-Arcas, J.A.: Optimization of annual energy demand in office buildings under the influence of climate change in Chile. Energy 114, 569–585 (2016). https://doi.org/10.1016/j.energy.2016.08.021

    Article  Google Scholar 

  22. Ge, J., Wu, J., Chen, S., Wu, J.: Energy efficiency optimization strategies for university research buildings with hot summer and cold winter climate of China based on the adaptive thermal comfort. J. Build. Eng. 18, 321–330 (2018). https://doi.org/10.1016/j.jobe.2018.03.022

    Article  Google Scholar 

  23. CEN EN 15251: Indoor environmental input parameters for design and assessment of energy performance of buildings - addressing indoor air quality, thermal environment, lighting and acoustics. Eur. Commun. Stand. 3, 1–52 (2007). https://doi.org/10.1520/E2019-03R13.Copyright

  24. American Society of Heating R and ACE (ASHRAE): ASHRAE standard 55-2017 thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta GA (2017)

    Google Scholar 

  25. Sánchez-García, D., Rubio-Bellido, C., Pulido-Arcas, J.A., et al.: Adaptive comfort models applied to existing dwellings in mediterranean climate considering global warming. Sustainability 10, 3507 (2018). https://doi.org/10.3390/su10103507

  26. Barbosa, R., Vicente, R., Santos, R.: Climate change and thermal comfort in Southern Europe housing: a case study from Lisbon. Build. Environ. 92, 440–451 (2015). https://doi.org/10.1016/j.buildenv.2015.05.019

    Article  Google Scholar 

  27. ISO: ISO 7730: ergonomics of the thermal environment analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Management 3, 605–615 (2005). https://doi.org/10.1016/j.soildyn.2004.11.005

  28. Feriadi, H., Wong, N.H.: Thermal comfort for naturally ventilated houses in Indonesia. Energy Build. 36, 614–626 (2004)

    Article  Google Scholar 

  29. Singh, M.K., Mahapatra, S., Atreya, S.K.: Thermal performance study and evaluation of comfort temperatures in vernacular buildings of North-East India. Build. Environ. 45, 320–329 (2010). https://doi.org/10.1016/j.buildenv.2009.06.009

    Article  Google Scholar 

  30. Desogus, G., Di Benedetto, S., Ricciu, R.: The use of adaptive thermal comfort models to evaluate the summer performance of a mediterranean earth building. Energy Build. 104, 350–359 (2015). https://doi.org/10.1016/j.enbuild.2015.07.020

    Article  Google Scholar 

  31. Attia, S., Carlucci, S.: Impact of different thermal comfort models on zero energy residential buildings in hot climate. Energy Build. 102, 117–128 (2015). https://doi.org/10.1016/j.enbuild.2015.05.017

    Article  Google Scholar 

  32. Ren, Z., Chen, D.: Modelling study of the impact of thermal comfort criteria on housing energy use in Australia. Appl. Energy 210, 152–166 (2018). https://doi.org/10.1016/j.apenergy.2017.10.110

    Article  Google Scholar 

  33. Spyropoulos, G.N., Balaras, C.A.: Energy consumption and the potential of energy savings in Hellenic office buildings used as bank branches - a case study. Energy Build. 43, 770–778 (2011). https://doi.org/10.1016/j.enbuild.2010.12.015

    Article  Google Scholar 

  34. Hoyt, T., Arens, E., Zhang, H.: Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 88, 89–96 (2014). https://doi.org/10.1016/j.buildenv.2014.09.010

    Article  Google Scholar 

  35. Wan, K.K.W., Li, D.H.W., Lam, J.C.: Assessment of climate change impact on building energy use and mitigation measures in subtropical climates. Energy 36, 1404–1414 (2011). https://doi.org/10.1016/j.energy.2011.01.033

    Article  Google Scholar 

  36. American National Standards Institute/American Society of Heating Refrigerating and Air-Conditioning Engineers (ANSI/ASHRAE): ANSI/ASHRAE Standard 55-2013. Thermal Environmental Conditions for Human Occupancy (2013)

    Google Scholar 

  37. European Committee for Standardization EN 15251: Indoor environmental input parameters for design and assessment of energy performance of buildings - addressing indoor air quality, thermal environment, lighting and acoustics, Brussels, Belgium (2007)

    Google Scholar 

  38. Sánchez-García, D., Rubio-Bellido, C., Marrero Meléndez, M., et al.: El control adaptativo en instalaciones existentes y su potencial en el contexto del cambio climático. Hábitat Sustentable 7, 06–17 (2017)

    Article  Google Scholar 

  39. Holmes, M.J., Hacker, J.N.: Climate change, thermal comfort and energy: meeting the design challenges of the 21st century. Energy Build. 39, 802–814 (2007). https://doi.org/10.1016/j.enbuild.2007.02.009

    Article  Google Scholar 

  40. Kramer, R.P., Maas, M.P.E., Martens, M.H.J., et al.: Energy conservation in museums using different setpoint strategies: a case study for a state-of-the-art museum using building simulations. Appl. Energy 158, 446–458 (2015). https://doi.org/10.1016/j.apenergy.2015.08.044

    Article  Google Scholar 

  41. van der Linden, A.C., Boerstra, A.C., Raue, A.K., et al.: Adaptive temperature limits: a new guideline in The Netherlands: a new approach for the assessment of building performance with respect to thermal indoor climate. Energy Build. 38, 8–17 (2006). https://doi.org/10.1016/j.enbuild.2005.02.008

    Article  Google Scholar 

  42. Arets MJP: Thermische behaaglijkheid : eisen voor de binnentemperatuur in gebouwen : een nieuwe richtlijn voor thermische behaaglijkheid in (kantoor)gebouwen. ISSO (2004)

    Google Scholar 

  43. Sánchez-Guevara Sánchez, C., Mavrogianni, A., Neila González, F.J.: On the minimal thermal habitability conditions in low income dwellings in Spain for a new definition of fuel poverty. Build. Environ. 114, 344–356 (2017). https://doi.org/10.1016/j.buildenv.2016.12.029

    Article  Google Scholar 

  44. Barbadilla-Martín, E., Guadix Martín, J., Salmerón Lissén, J.M., et al.: Assessment of thermal comfort and energy savings in a field study on adaptive comfort with application for mixed mode offices. Energy Build. 167, 281–289 (2017). https://doi.org/10.1016/j.enbuild.2018.02.033

    Article  Google Scholar 

  45. Barbadilla-Martín, E., Salmerón Lissén, J.M., Martín, J.G., et al.: Field study on adaptive thermal comfort in mixed mode office buildings in southwestern area of Spain. Build. Environ. 123 (2017). https://doi.org/10.1016/j.buildenv.2017.06.042

  46. Salcido, J.C., Raheem, A.A., Issa, R.R.A.: From simulation to monitoring: evaluating the potential of mixed-mode ventilation (MMV) systems for integrating natural ventilation in office buildings through a comprehensive literature review. Energy Build. 127, 1008–1018 (2016). https://doi.org/10.1016/j.enbuild.2016.06.054

    Article  Google Scholar 

  47. Ezzeldin, S., Rees, S.J.: The potential for office buildings with mixed-mode ventilation and low energy cooling systems in arid climates. Energy Build. 65, 368–381 (2013). https://doi.org/10.1016/j.enbuild.2013.06.004

    Article  Google Scholar 

  48. Chen, J., Augenbroe, G., Song, X.: Evaluating the potential of hybrid ventilation for small to medium sized office buildings with different intelligent controls and uncertainties in US climates. Energy Build. 158, 1648–1661 (2018). https://doi.org/10.1016/j.enbuild.2017.12.004

    Article  Google Scholar 

  49. Barbadilla-Martín, E., Salmerón Lissén, J.M., Guadix Martín, J., et al.: Field study on adaptive thermal comfort in mixed mode office buildings in Southwestern area of Spain. Build. Environ. 123, 163–175 (2017). https://doi.org/10.1016/j.buildenv.2017.06.042

    Article  Google Scholar 

  50. Manu, S., Shukla, Y., Rawal, R., et al.: Field studies of thermal comfort across multiple climate zones for the subcontinent: India Model for Adaptive Comfort (IMAC). Build. Environ. 98, 55–70 (2016). https://doi.org/10.1016/j.buildenv.2015.12.019

    Article  Google Scholar 

  51. Rupp, R.F., de Dear, R., Ghisi, E.: Field study of mixed-mode office buildings in Southern Brazil using an adaptive thermal comfort framework. Energy Build. 158, 1475–1486 (2018). https://doi.org/10.1016/j.enbuild.2017.11.047

    Article  Google Scholar 

  52. Indraganti, M., Ooka, R., Rijal, H.B.: Field investigation of comfort temperature in Indian office buildings: a case of Chennai and Hyderabad. Build. Environ. 65, 195–214 (2013). https://doi.org/10.1016/j.buildenv.2013.04.007

    Article  Google Scholar 

  53. Indraganti, M., Ooka, R., Rijal, H.B., Brager, G.S.: Adaptive model of thermal comfort for offices in hot and humid climates of India. Build. Environ. 74, 39–53 (2014). https://doi.org/10.1016/j.buildenv.2014.01.002

    Article  Google Scholar 

  54. Oropeza-Perez, I., Petzold-Rodriguez, A.H., Bonilla-Lopez, C.: Adaptive thermal comfort in the main Mexican climate conditions with and without passive cooling. Energy Build. 145, 251–258 (2017). https://doi.org/10.1016/j.enbuild.2017.04.031

    Article  Google Scholar 

  55. Luo, M., Cao, B., Damiens, J., et al.: Evaluating thermal comfort in mixed-mode buildings: a field study in a subtropical climate. Build. Environ. 88, 46–54 (2015). https://doi.org/10.1016/j.buildenv.2014.06.019

    Article  Google Scholar 

  56. Kim, J., de Dear, R., Parkinson, T., Candido, C.: Understanding patterns of adaptive comfort behaviour in the Sydney mixed-mode residential context. Energy Build. 141, 274–283 (2017). https://doi.org/10.1016/j.enbuild.2017.02.061

    Article  Google Scholar 

  57. Thomas, L.: Combating overheating: mixed-mode conditioning for workplace comfort. Build. Res. Inf. 45, 176–194 (2017). https://doi.org/10.1080/09613218.2017.1252617

    Article  Google Scholar 

  58. European Commission: COMMISSION RECOMMENDATION (EU) 2016/1318 of 29 July 2016 on guidelines for the promotion of nearly zero-energy buildings and best practices to ensure that, by 2020, all new buildings are nearly zero-energy buildings (2016)

    Google Scholar 

  59. D’Agostino, D., Mazzarella, L.: What is a nearly zero energy building? Overview, implementation and comparison of definitions. J. Build. Eng. 21, 200–212 (2019). https://doi.org/10.1016/j.jobe.2018.10.019

    Article  Google Scholar 

  60. European Commission: Directiva (UE) 2018/844 por la que se modifica la Directiva 2010/31/UE relativa a la eficiencia energética de los edificios y la Directiva 2012/27/UE relativa a la eficiencia energética. D Of la Unión Eur 156:75–91 (2018)

    Google Scholar 

  61. Attia, S., Eleftheriou, P., Xeni, F., et al.: Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy Build. 155, 439–458 (2017). https://doi.org/10.1016/J.ENBUILD.2017.09.043

    Article  Google Scholar 

  62. IPCC: Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (2014)

    Google Scholar 

  63. Jentsch, M.F., Bahaj, A.S., James, P.A.B.: Climate change future proofing of buildings—generation and assessment of building simulation weather files. Energy Build. 40, 2148–2168 (2008). https://doi.org/10.1016/j.enbuild.2008.06.005

    Article  Google Scholar 

  64. Mylona, A.: The use of UKCP09 to produce weather files for building simulation. Build. Serv. Eng. Res. Technol. 33, 51–62 (2012). https://doi.org/10.1177/0143624411428951

    Article  Google Scholar 

  65. Guan, L.: Preparation of future weather data to study the impact of climate change on buildings. Build. Environ. 44, 793–800 (2009). https://doi.org/10.1016/j.buildenv.2008.05.021

    Article  Google Scholar 

  66. Jentsch, M.F., James, P.A.B., Bourikas, L., Bahaj, A.S.: Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renew. Energy 55, 514–524 (2013). https://doi.org/10.1016/j.renene.2012.12.049

    Article  Google Scholar 

  67. IPCC Data Distribution Centre. www.ipcc-data.org. Accessed 15 Feb 2016

  68. Kalvelage, K., Passe, U., Rabideau, S., Takle, E.S.: Changing climate: the effects on energy demand and human comfort. Energy Build. 76, 373–380 (2014). https://doi.org/10.1016/j.enbuild.2014.03.009

    Article  Google Scholar 

  69. Wang, H., Chen, Q.: Impact of climate change heating and cooling energy use in buildings in the United States. Energy Build. 82, 428–436 (2014). https://doi.org/10.1016/j.enbuild.2014.07.034

    Article  Google Scholar 

  70. Rubio-Bellido, C., Pérez-Fargallo, A., Pulido-Arcas, J.A.: Optimization of annual energy demand in office buildings under the influence of climate change in Chile. Energy 114, 569–585 (2016). https://doi.org/10.1016/j.energy.2016.08.021

    Article  Google Scholar 

  71. Robert, S.C., Koh, L., Marchand, R., et al.: Fuel Poverty. Perspectives from the front line, Sheffield (2012)

    Google Scholar 

  72. Boardman, B.: Fuel Poverty: From Cold Homes to Affordable Warmth. Wiley, London (1991)

    Google Scholar 

  73. ne Liddell C., Morris, C., McKenzie, P., Rae, G.: Fuel Poverty. 1991 – 2012. Commemorating 21 years of action, policy and research, Belfast, UK (2012)

    Google Scholar 

  74. Santamouris, M., Paravantis, J.A., Founda, D., et al.: Financial crisis and energy consumption: a household survey in Greece. Energy Build. 65, 477–487 (2013). https://doi.org/10.1016/j.enbuild.2013.06.024

    Article  Google Scholar 

  75. Walker, R., McKenzie, P., Liddell, C., Morris, C.: Estimating fuel poverty at household level: an integrated approach. Energy Build. 80, 469–479 (2014). https://doi.org/10.1016/j.enbuild.2014.06.004

    Article  Google Scholar 

  76. O’Sullivan, K.C., Howden-Chapman, P.L., Fougere, G.M.: Fuel poverty, policy, and equity in New Zealand: the promise of prepayment metering. Energy Res. Soc. Sci. 7, 99–107 (2015). https://doi.org/10.1016/j.erss.2015.03.008

    Article  Google Scholar 

  77. Legendre, B., Ricci, O.: Measuring fuel poverty in France: which households are the most fuel vulnerable? Energy Econ. 49, 620–628 (2015). https://doi.org/10.1016/j.eneco.2015.01.022

    Article  Google Scholar 

  78. Atsalis, A., Mirasgedis, S., Tourkolias, C., Diakoulaki, D.: Fuel poverty in Greece: quantitative analysis and implications for policy. Energy Build. 131, 87–98 (2016). https://doi.org/10.1016/j.enbuild.2016.09.025

    Article  Google Scholar 

  79. Fabbri, K.: Building and fuel poverty, an index to measure fuel poverty: an Italian case study. Energy 89, 244–258 (2015). https://doi.org/10.1016/j.energy.2015.07.073

    Article  Google Scholar 

  80. Healy, J.D., Clinch, J.P.: Fuel poverty, thermal comfort and occupancy: results of a national household-survey in Ireland. Appl. Energy 73, 329–343 (2002). https://doi.org/10.1016/S0306-2619(02)00115-0

    Article  Google Scholar 

  81. Healy, J.D.: Housing, Fuel poverty and Health: A Pan-European Analysis. Routledge, London (2004)

    Google Scholar 

  82. Bhide, A., Monroy, C.R.: Energy poverty: a special focus on energy poverty in India and renewable energy technologies. Renew. Sustain. Energy Rev. 15, 1057–1066 (2011). https://doi.org/10.1016/j.rser.2010.11.044

    Article  Google Scholar 

  83. Okushima, S.: Measuring energy poverty in Japan, 2004–2013. Energy Policy 98, 557–564 (2016). https://doi.org/10.1016/j.enpol.2016.09.005

    Article  Google Scholar 

  84. Roberts, D., Vera-Toscano, E., Phimister, E.: Fuel poverty in the UK: is there a difference between rural and urban areas? Energy Policy 87, 216–223 (2015). https://doi.org/10.1016/j.enpol.2015.08.034

    Article  Google Scholar 

  85. Rosenow, J., Platt, R., Flanagan, B.: Fuel poverty and energy efficiency obligations – a critical assessment of the supplier obligation in the UK. Energy Policy 62, 1194–1203 (2013). https://doi.org/10.1016/j.enpol.2013.07.103

    Article  Google Scholar 

  86. Lacroix, E., Chaton, C.: Fuel poverty as a major determinant of perceived health: the case of France. Public Health 129, 517–524 (2015). https://doi.org/10.1016/j.puhe.2015.02.007

    Article  Google Scholar 

  87. Sharpe, R.A., Thornton, C.R., Nikolaou, V., Osborne, N.J.: Fuel poverty increases risk of mould contamination, regardless of adult risk perception & ventilation in social housing properties. Environ. Int. 79, 115–129 (2015). https://doi.org/10.1016/j.envint.2015.03.009

    Article  Google Scholar 

  88. Teller-Elsberg, J., Sovacool, B., Smith, T., Laine, E.: Fuel poverty, excess winter deaths, and energy costs in Vermont: Burdensome for whom? Energy Policy 90, 81–91 (2016). https://doi.org/10.1016/j.enpol.2015.12.009

    Article  Google Scholar 

  89. Walker, R., Liddell, C., McKenzie, P., Morris, C.: Evaluating fuel poverty policy in Northern Ireland using a geographic approach. Energy Policy 63, 765–774 (2013). https://doi.org/10.1016/j.enpol.2013.08.047

    Article  Google Scholar 

  90. Pereira, M.G., Freitas, M.A.V., da Silva, N.F.: Rural electrification and energy poverty: empirical evidences from Brazil. Renew. Sustain. Energy Rev. 14, 1229–1240 (2010). https://doi.org/10.1016/j.rser.2009.12.013

    Article  Google Scholar 

  91. Walker, R., Liddell, C., McKenzie, P., et al.: Fuel poverty in Northern Ireland: humanizing the plight of vulnerable households. Energy Res. Soc. Sci. 4, 89–99 (2014). https://doi.org/10.1016/j.erss.2014.10.001

    Article  Google Scholar 

  92. Snell, C., Bevan, M., Thomson, H.: Justice, fuel poverty and disabled people in England. Energy Res. Soc. Sci. 10, 123–132 (2015). https://doi.org/10.1016/j.erss.2015.07.012

    Article  Google Scholar 

  93. Desiere, S., Vellema, W., D’Haese, M.: A validity assessment of the Progress out of Poverty Index (PPI)TM. Eval. Progr. Plan. 49, 10–18 (2015). https://doi.org/10.1016/j.evalprogplan.2014.11.002

    Article  Google Scholar 

  94. Iddrisu, I., Bhattacharyya, S.C.: Sustainable energy development index: a multi-dimensional indicator for measuring sustainable energy development. Renew. Sustain. Energy Rev. 50, 513–530 (2015). https://doi.org/10.1016/j.rser.2015.05.032

    Article  Google Scholar 

  95. Wang, K., Wang, Y.-X., Li, K., Wei, Y.-M.: Energy poverty in China: an index based comprehensive evaluation. Renew. Sustain. Energy Rev. 47, 308–323 (2015). https://doi.org/10.1016/j.rser.2015.03.041

    Article  Google Scholar 

  96. Bienvenido-Huertas, D., Rubio-Bellido, C., PĂ©rez-Fargallo, A., Pulido-Arcas, J.A.: Energy saving potential in current and future world built environments based on the adaptive comfort approach. J. Clean. Prod. 119306 (2019). https://doi.org/10.1016/j.jclepro.2019.119306

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Rubio-Bellido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rubio-Bellido, C., Guevara-GarcĂ­a, F.J. (2021). Collecting and Reviewing Written Resources that Map the Knowledge Triangle for Transferring Research and Innovation on Sustainable Rehabilitation of the Built Environment in Continuing Education. In: Rotaru, A. (eds) Critical Thinking in the Sustainable Rehabilitation and Risk Management of the Built Environment. CRIT-RE-BUILT 2019. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-61118-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61118-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61117-0

  • Online ISBN: 978-3-030-61118-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics