Skip to main content

Patient Specific Classification of Dental Root Canal and Crown Shape

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2020)

Abstract

This paper proposes machine learning approaches to support dentistry researchers in the context of integrating imaging modalities to analyze the morphology of tooth crowns and roots. One of the challenges to jointly analyze crowns and roots with precision is that two different image modalities are needed. Precision in dentistry is mainly driven by dental crown surfaces characteristics, but information on tooth root shape and position is of great value for successful root canal preparation, pulp regeneration, planning of orthodontic movement, restorative and implant dentistry. An innovative approach is to use image processing and machine learning to combine crown surfaces, obtained by intraoral scanners, with three dimensional volumetric images of the jaws and teeth root canals, obtained by cone beam computed tomography. In this paper, we propose a patient specific classification of dental root canal and crown shape analysis workflow that is widely applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ko, C.C., et al.: Machine Learning in Orthodontics: Application Review. Craniofacial Growth Series, vol. 56, pp 117–135 (2020). http://hdl.handle.net/2027.42/153991

  2. Xu, X., Liu, C., Zheng, Y.: 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans. Vis. Comput. Graph. 25(7), 2336–2348 (2019). https://doi.org/10.1109/TVCG.2018.2839685

    Article  Google Scholar 

  3. Elhaddaoui, R., et al.: Resorption of maxillary incisors after orthodontic treatment-clinical study of risk factors. Int. Orthod. 14, 48–64 (2016). https://doi.org/10.1016/j.ortho.2015.12.015

  4. Marques LS, Ramos-Jorge ML, Rey AC, Armond MC, Ruellas AC. Severe root resorption in orthodontic patients treated with the edgewise method: prevalence and predictive factors. Am J Orthod Dentofacial Orthop 2010; 137: 384 ± 8. https://doi.org/10.1016/j.ajodo.2008.04.024

  5. Marques, L.S., Chaves, K.C., Rey, A.C., Pereira, L.J., Ruellas, A.C.: Severe root resorption and orthodontic treatment: clinical implications after 25 years of follow-up. Am. J. Orthod. Dentofac. Orthop. 139, S166–S169 (2011). https://doi.org/10.1016/j.ajodo.2009.05.032

  6. Kamble, R.H., Lohkare, S., Hararey, P.V., Mundada, R.D.: Stress distribution pattern in a root of maxillary central incisor having various root morphologies: a finite element study. Angle Orthod. 82, 799–805 (2012). https://doi.org/10.2319/083111-560.1

  7. Oyama, K., Motoyoshi, M., Hirabayashi, M., Hosoi, K., Shimizu, N.: Effects of root morphology on stress distribution at the root apex. Eur. J. Orthod. 29, 113–117 (2007). https://doi.org/10.1093/ejo/cjl043

  8. Lupi, J.E., Handelman, C.S., Sadowsky, C.: Prevalence and severity of apical root resorption and alveolar bone loss in orthodontically treated adults. Am. J. Orthod. Dentofac. Orthop. 109(1), 28–37 (1996). https://doi.org/10.1016/s0889-5406(96)70160-9

    Article  Google Scholar 

  9. Ahlbrecht, C.A., et al.: Three-dimensional characterization of root morphology for maxillary incisors. PLoS ONE 12(6), e0178728 (2017). https://doi.org/10.1371/journal.pone.0178728

    Article  Google Scholar 

  10. ITK‐ snap. www.itksnap.org(2020). Accessed 30 June 2020

  11. Slicer, version 4.11. www.slicer.org. Accessed 30 June 2020

  12. Ioshida, M., et al.: Accuracy and reliability of mandibular digital model registration with use of the mucogingival junction as the reference. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 127(4), 351–360 (2019). https://doi.org/10.1016/j.oooo.2018.10.003

    Article  Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) International Conference on Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. https://github.com/zhixuhao/unet. Accessed 30 June 2020

  15. Waldner, F., Diakogiannis, F.I.: Deep learning on edge: ex-tracting field boundaries from satellite images with a convolutional neural network. Remote Sens. Environ. 245, 111741 (2020)

    Article  Google Scholar 

  16. Ribera, N.T.: Shape variation analyzer: a classifier for temporomandibular joint damaged by osteoarthritis. Proc SPIE Int. Soc. Opt. Eng. 10950, 1095021 (2019). https://doi.org/10.1117/12.2506018

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 7780459, pp. 770–778 (2016)

    Google Scholar 

  18. DentalModelSeg source code and documentation. https://github.com/DCBIA-OrthoLab/fly-by-cnn. Accessed 30 June 2020

  19. Data Storage Computation and Integration, DSCI. www.dsci.dent.umich.edu. Accessed 30 June 2020

  20. Michoud, L., et al.: A web-based system for statistical shape analysis in temporomandibular joint osteoarthritis. Proc. SPIE Int. Soc. Opt. Eng. 10953, 109530T (2019). https://doi.org/10.1117/12.250603

    Article  Google Scholar 

  21. Michetti, J., Basarab. A., Diemer, F., Kouame, D.: Comparison of an adaptive local thresholding method on CBCT and µCT endodontic images. Phys. Med. Biol. 63(1), 015020 (2017). https://doi.org/10.1088/1361-6560/aa90ff

Download references

Acknowledgments

Supported by NIH DE R01DE024450, R21DE025306 and R01 EB021391.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Cevidanes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dumont, M. et al. (2020). Patient Specific Classification of Dental Root Canal and Crown Shape. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds) Shape in Medical Imaging. ShapeMI 2020. Lecture Notes in Computer Science(), vol 12474. Springer, Cham. https://doi.org/10.1007/978-3-030-61056-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61056-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61055-5

  • Online ISBN: 978-3-030-61056-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics