Skip to main content

Composting for Food Processing Wastes

  • Chapter
  • First Online:
Integrated Natural Resources Research

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 22))

Abstract

Composting of food processing waste was analyzed as a biological process and an engineered system. The goal is to establish fundamental principles and design criteria that would aid its adoption as waste management practice. Characteristics of the inflow, reactor, and outflow were evaluated. Success of the bioreactor was found to be largely dependent on microbial community structure, physical properties of biodegradable waste (BW), aeration, and time required for maturation. Vermicomposting, electric field induction, maggot farming, microbial fuel cells, energy production, air pollution reduction, and leachate treatment were explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCollough J, Bayramoglu MF, He M (2018) Transitioning into a ‘throwaway planet’. Wiley Int J Consum Stud 42:131–140. Retrieved from wileyonlinelibrary.com/journal/ijcs

    Article  Google Scholar 

  2. Meredith G (1862) Modern love and poems of the English roadside: with poems and ballads. Yale University Press, New Haven, USA, p 203

    Google Scholar 

  3. Watanabe O, Isoda S (2011) Integrated model of reaction rate equations and thermal energy balance in aerobic bioreactor for food waste decomposition. J Environ Sci 23:S84–S89. Retrieved from www.jesc.ac.cn

    Article  Google Scholar 

  4. Onursal E, Ekinci K (2016) A kinetic study on how C/N ratio affects energy consumption of composting of rose oil-processing wastes with caged layer manure and straw. Environ Prog Sustain Energy 36(1):129–137. https://doi.org/10.1002/ep.12460

    Article  CAS  Google Scholar 

  5. Zhu N (2007) Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresour Technol 98:9–13. https://doi.org/10.1016/j.biortech.2005.12.003

    Article  CAS  Google Scholar 

  6. Tenuta M, Lazarovits G (2002) Ammonia and nitrous acid from nitrogenous amendments kill the Microsclerotia of Verticillium dahliae. Phythpathology 92(3):255–264. Retrieved from proxy.ulib.csuohio.edu

    Article  CAS  Google Scholar 

  7. Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62. https://doi.org/10.1146/annurev-phyto-080508-081748

    Article  CAS  Google Scholar 

  8. Dirk vas Elsas J, Chiurazzi M, Mallon CA, Elhottowa D, Kristufek V, Salles JF (2012) Microbial diversity determines the invasion of soil by a bacterial pathogen. PNAS 109(4):1159–1164. Retrieved from www.pnas.org/cgi/doi/10.1073/pnas.1109326109

    Article  Google Scholar 

  9. Cao Y, Tian Y, Gao Y, Li J (2018) Microbial diversity in compost is critical in suppressing plant fungal pathogen survival and enhancing cucumber seedling growth. Compost Sci Util 26(3):189–200. https://doi.org/10.1080/1065657X.2018.1438933

    Article  CAS  Google Scholar 

  10. Zhang WM, Yu CX, Wang X, Hai L (2020) Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total loses of N and C in chicken manure and corn Stover mix composting. Bioresour Technol 297:1–9. https://doi.org/10.1016/j.biortech.2019.122410

    Article  CAS  Google Scholar 

  11. Gao M, Liang F, Yu A, Li B, Yang L (2010) Evaluation of stability and maturity during forced-aeration composting of chicken manure and saw dust at different C/N ratios. Chemosphere 78(5):614–619. https://doi.org/10.1016/j.chemosphere.2009.10.056

    Article  CAS  Google Scholar 

  12. Rush CM, Lyda SD (1982) Effects of anhydrous ammonia on mycelium and sclerotia of Phymatotrichum omnivorum. Phytopathology 72:1085–1089

    Article  CAS  Google Scholar 

  13. Docherty PA, Snider MD (1991) Effect of hypertonic and sodium-free medium on transport of a membrane glycoprotein along the secretory pathway in cultured mammalian cells. J Cell Physiol 146:34–42

    Article  CAS  Google Scholar 

  14. Schneider M, Marison IW, von Stockar U (1996) The importance of ammonia in mammalian cell culture. J Biotechnol 46:161–185

    Article  CAS  Google Scholar 

  15. Britto DT, Siddiqi MY, Glass ADM, Kronzucker HJ (2001) Futile transmembrane NH4 + cycling: a cellular hypothesis to explain ammonium toxicity in plants. PNAS 98:4255–4258

    Article  CAS  Google Scholar 

  16. Sharma P, Poulsen TG (2009) Gaseous oxygen uptake in porous media at different moisture contents and airflow velocities. J Air Waste Manage Assoc 59:676–682. https://doi.org/10.3155/1047-3289.59.6.676

    Article  CAS  Google Scholar 

  17. Fan LQ, Liu G, Zhang Y, Fan Q, Wang H (2017) Aeration optimization through operation at low dissolved oxygen concentrations: evaluation of oxygen mass transfer dynamics different activated sludge systems. J Environ Sci 55:224–235. https://doi.org/10.1016/j.jes.2016.08.008

    Article  CAS  Google Scholar 

  18. Rehman F, Medley GJD, Bandulasena HCH, Zimmerman WB (2015) Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants. Environ Res 137:32–39

    Article  CAS  Google Scholar 

  19. Li Y, Jin P, Liu T, Lv J, Jiang J (2018) A novel method for sewage sludge composting using bamboo charcoal as a separating material. Environ Sci Pollut Res Int 26:33870–33881

    Article  Google Scholar 

  20. Tang J, Li X, Zhan W, Wang Y, Cui P, Zeng RJ et al (2019) Electric field electron flow to simultaneously enhance the maturity of aerobic composting and mitigate greenhouse gas emissions. Bioresour Technol 279:234–242. https://doi.org/10.1016/j.biortech.2019.01.140

    Article  CAS  Google Scholar 

  21. Reimers CE, Tender LM, Fertig SJ, Wang W (2006) Harvesting energy from the marine sediment−water interface. Biosens Bioelectron 21(11):192–195

    Google Scholar 

  22. Ge J, Huang G, Li J, Sun X, Han L (2018) Multivariateandmultiscaleapproachesfor interpreting the mechanisms of nitrous oxide emission during pig manure-wheat straw aerobic composting. Environ Sci Technol 52(15):8408–8418

    Article  CAS  Google Scholar 

  23. Maeda K, Toyoda S, Shimojima R, Osada T, Hanajima D, Moriok R (2010) Source of nitrous oxide emissions during the cow manure composting process as revealed by isotopomer analysis of and amoa abundance in betaproteobacterial ammonia-oxidizing bacteria. Appl Environ Microbiol 76(5):1555–1562

    Article  CAS  Google Scholar 

  24. Agnew J, Leonard J (2003) The physical properties of compost. Compost Sci Util 11:286–264

    Article  Google Scholar 

  25. Agostini F, Sundberg C, Navia R (2012) Is biodegradable waste a porous environment? A review. Waste Manag Res 30(10):1001–1015. https://doi.org/10.1177/073424X12452444

    Article  CAS  Google Scholar 

  26. Beck-Friis B, Smårs S, Jönsson H, Eklind Y, Kirchmann H (2003) Composting of source-separated household organics at different oxygen levels: gaining an understanding of the emission dynamics. Compost Sci Util 11:41–50

    Article  Google Scholar 

  27. Richard T, Veeken A, De Wilde V, Hamelers H (2004) Air-filled porosity and permeability relationships during solid-state fermentation. Biotechnol Prog 20:1372–1381

    Article  CAS  Google Scholar 

  28. Gross TA (2019) Cohesion: hydrogen bonds make water sticky. Retrieved from usgs.gov

  29. Stancato A (2015) CO2 molecule. Retrieved from micrometl.com

  30. Norton T, Da-Wen S Grant J, Fallon R, Dodd V (2007) Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: a review. Bioresour Technol 98:2386–2414

    Article  CAS  Google Scholar 

  31. Kling T, Korkealaakso J (2006) Multiphase modelling and inversion methods for controlling a landfill bioreactor. In: Proceedings, TOUGH symposium, Berkeley, USA, 15–17 May 2006. Lawrence Berkeley National Laboratory, Berkeley, USA

    Google Scholar 

  32. Sarath G, Dien B, Saathoff AJ, Vogel KP, Mitchell RB, Chen H (2011) Ethanol yields and cell wall properties in divergently bred switchgrass genotypes. Bioresour Technol 102(20):9579–9585. https://doi.org/10.1016/j.biortech.2011.07.086. ISSN 0960-8524

    Article  CAS  Google Scholar 

  33. Barnes WJ, Anderson CT (2018) Cytosolic invertases contribute to cellulose biosynthesis and influence carbon partitioning in seedlings of Arabidopsis thaliana. Plant J 94:956–974. https://doi.org/10.1111/tpj.13909

    Article  CAS  Google Scholar 

  34. Geider RJ, Delucia EH, Falkowski PG, Finzi AC, Grime JP, Grace J, Kana TM, La Roche J, Long SP, Osborne BA, Platt T, Prentice IC, Raven JA, Schlesinger WH, Smetacek V, Stuart V, Sathyendranath S, Thomas RB, Vogelmann TC, Williams P, Woodward FI (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Chang Biol 7:849–882. https://doi.org/10.1046/j.1365-2486.2001.00448.x

    Article  Google Scholar 

  35. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  Google Scholar 

  36. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568. https://doi.org/10.1111/j.1365-313X.2008.03463.x

    Article  CAS  Google Scholar 

  37. Lyczakowski JJ, Bourdon M, Terrett OM, Helariutta Y, Wightman R, Dupree P (2019) Structural imaging of native cryo-preserved secondary cell walls reveals the presence of macrofibrils and their formation requires normal cellulose, lignin and xylan biosynthesis. Front Plant Sci 10:1–14. https://doi.org/10.3389/fpls.2019.01398

    Article  Google Scholar 

  38. Terrett OM, Dupree P (2019) Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr Opin Biotechnol 56:97–104. https://doi.org/10.1016/j.copbio.2018.10.010

    Article  CAS  Google Scholar 

  39. Postgate J (1998) The origins of the unit of nitrogen fixation at the University of Sussex. Notes Rec R Soc Lond 52:355–362. https://doi.org/10.1098/rsnr.1998.0055

    Article  Google Scholar 

  40. Zhu J, Fang XZ, Dai YJ, Zhu YX, Chen HS, Lin XY, Jin CW (2019) Nitrate transporter 1.1 alleviates lead toxicity in Arabidopsis by preventing rhizosphere acidification. J Exp Bot 70(21):6363–6374. https://doi.org/10.1093/jxb/erz374

    Article  CAS  Google Scholar 

  41. Touraine B, Daniel-Vedele F, Forde BG (2001) Nitrate uptake and its regulation. In: Lea PJ, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin. https://doi.org/10.1007/978-3-662-04064-5_1

    Chapter  Google Scholar 

  42. Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, Takahashi H, von Wirén N (2007) The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell 19(8):2636–2652. https://doi.org/10.1105/tpc.107.052134

    Article  CAS  Google Scholar 

  43. Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ (2014) Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9(3). https://doi.org/10.1371/journal.pone.0091941

  44. Wang Y, Sun J, Zhong H, Li N, Xu H, Zhu Q, Liu Y (2017) Effect of probiotics on the meat flavour and gut microbiota of chicken. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-06677-z

  45. Szekely AJ, Sipos R, Berta B, Vajna B, Hajdu C, Marialigeti K (2009) DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. Environ Microbiol 57:522–533. https://doi.org/10.1007/s00248-008-9424-5

    Article  Google Scholar 

  46. Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS One 8(11):1–10. Retrieved from www.plosone.org

    Article  Google Scholar 

  47. Gu W, Lu Y, Tan Z, Xie P, Li X, Sun L (2017) Fungi diversity from different depths and times in chicken manure waste static aerobic composting. Bioresour Technol 239:447–453. Retrieved from www.elsevier.com/locate/biortech

    Article  CAS  Google Scholar 

  48. Bonito G, Isikhuemhen OS, Vilgalys R (2010) Identification of fungi associated with municipal compost using DNA-based techniques. Bioresour Technol 101:1021–1027

    Article  CAS  Google Scholar 

  49. Mcnear DH (2013) Difference between ectomycorrhizae and endomycorrhizae colonization of plant roots. Retrieved from researchgate.net

  50. Gajalakshmi S, Ramasamy EV, Abbasi SA (2001) Potential of two epigeic and two anecic earthworm species in vermicomposting of water hyacinth. Bioresour Technol 76(3):177–181. https://doi.org/10.1016/S0960-8524(00)00133-4. ISSN 0960-8524

    Article  CAS  Google Scholar 

  51. Raphael K, Velmourougane K (2011) Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus Eugeniae) and native earthworm (Perionyx Ceylanesis) species. Bioderadation 22:497–507. https://doi.org/10.1007/s10532-010-9422-4

    Article  Google Scholar 

  52. Pedersen JC, Hendriksen NB (1993) Effect of passage through the intestinal tract of detritivore earthworms (Lumbricus spp.) on the number of selected Gram-negative and total bacteria. Biol Fertil Soils 16:227–232. https://doi.org/10.1007/BF00361413

    Article  Google Scholar 

  53. Abbasi T, Gajalakshmi S, Abbasi SA (2009) Towards modeling and design of vermicomposting systems: mechanisms of composting/vermicomposting and their implications. Indian J Biotechnol 8:177–182. Retrieved from proxy.ulib.csuohio.edu

    Google Scholar 

  54. Sharma K, Garg VK (2017) Management of food and vegetable processing waste spiked with buffalo waste using earthworms (Eisenia fetida). Environ Sci Pollut Res 24:7829–7836. https://doi.org/10.1007/s11356-017-8438-2

    Article  CAS  Google Scholar 

  55. Sahariah B, Goswami L, Kim KH, Bhattachatyya P, Bhattacharya SS (2015) Metal remediation and biodegradation potential of earthworm species on municipal solid waste a parallel analysis between Metaphire posthuma and Eisenia fetida. Bioresour Technol 180:230–236

    Article  CAS  Google Scholar 

  56. Zhao C, Wang Y, Wang Y, Wu F, Zhang J, Cui R, Wang L (2018) Insights into the role of earthworms on the optimization of microbial community structure during vermicomposting of sewage sludge by PLFA analysis. Waste Manag 79:700–708. Retrieved from www.elsevier.com/locate/wasman

    Article  Google Scholar 

  57. Zotin AI (1990) Thermodynamic bases of biological processes. Physiological reactions and adaptations. de Gruyter, Berlin, Germany

    Google Scholar 

  58. Leslie Grady CP, Lim HC (1980) Biological wastewater treatment: theory and applications. M. Dekker, New York, USA

    Google Scholar 

  59. Kumar SA, Adilakshmi D, Ramakumar PV, Ramesh D (2016) Character association and path coefficient analysis in rice hybrids (Oryza sativa L.) for yield, yield components and quality traits. Life Sci Leaf:10–18

    Google Scholar 

  60. Colón J, Cadena E, Pognani M, Barrena R, Sánchez A, Font X, Artola A (2012) Determination of the energy and environmental burdens associated with the biological treatment of source-separated municipal solid wastes. Energy Environ Sci 5:5731–5741

    Article  Google Scholar 

  61. Komilis DP, Ham RK, Park JK (2004) Emission of volatile organic compounds during composting of municipal solid wastes. Water Res 38:1707–1714

    Article  CAS  Google Scholar 

  62. Schlegelmilch M, Streese J, Stegmann R (2005) Odour management and treatment technologies: an overview. Waste Manag 25(9):928–939. https://doi.org/10.1016/j.wasman.2005.07.006

    Article  CAS  Google Scholar 

  63. Dhamodharan K, Varma VS, Veluchamy C, Pugazhendhi A, Rajendran K (2019) Emission of volatile organic compounds from composting: a review on assessment, treatment and perspectives. Sci Total Environ 695:133725. https://doi.org/10.1016/j.scitotenv.2019.133725

    Article  CAS  Google Scholar 

  64. Cox HH, Deshusses MA (1998) Biological waste air treatment in biotrickling filters. Curr Opin Biotechnol 9:256–262

    Article  CAS  Google Scholar 

  65. Mudliar S, Giri B, Padoley K, Satpute D, Dixit R, Bhatt P, Pandey R, Juwarkar A, Vaidya A (2010) Bioreactors for treatment of VOCs and odours – a review. J Environ Manag 91:1039–1054

    Article  CAS  Google Scholar 

  66. Kennes C, Rene ER, Veiga MC (2009) Bioprocesses for air pollution control. J Chem Technol Biotechnol 84:1419–1436

    Article  CAS  Google Scholar 

  67. Jiang T, Ma X, Yang J, Tang Q, Yi Z, Chen M, Li G (2016) Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting. Bioresour Technol 217:219–226

    Article  CAS  Google Scholar 

  68. Yang F, Li Y, Han Y, Qian W, Li G, Luo W (2019) Performance of mature compost to control gaseous emissions in kitchen waste composting. Sci Total Environ 657:262–269. Retrieved from www.elsevier.com/locate/scitotenv

    Article  CAS  Google Scholar 

  69. Maeda K, Morioka R, Hanajima D, Osada T (2010) Theimpactofusingmaturecompost on nitrous oxide emission and the denitrifier community in the cattle manure composting process. Microb Ecol 59(1):25–36

    Article  Google Scholar 

  70. Wang K, Wu Y, Li W, Wu C, Chen Z (2018) Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting. Bioresour Technol 251:320–326

    Article  CAS  Google Scholar 

  71. Shu Z, Lü Y, Huang J, Zhang W (2016) Treatment of compost leachate by the combination of coagulation and membrane process. Chin J Chem Eng 24(10):1369–1374. https://doi.org/10.1016/j.cjche.2016.05.022

    Article  CAS  Google Scholar 

  72. Vázquez M, De La Varga D, Plana R, Soto M (2013) Vertical flow constructed wetland treating high strength wastewater from swine slurry composting. Ecol Eng 50:37–43

    Article  Google Scholar 

  73. Newman JM, Clausen JC (1997) Seasonal effectiveness of a constructed wetland for processing Milkhouse wastewater. Wetlands 17:375–382

    Article  Google Scholar 

  74. Poach M, Hunt P, Vanotti M, Stone K, Matheny T, Johnson M, Sadler E (2003) Improved nitrogen treatment by constructed wetlands receiving partially nitrified liquid swine manure. Ecol Eng 20:183

    Article  Google Scholar 

  75. De La Varga D, Díaz M, Ruiz I, Soto M (2013) Avoiding clogging in constructed wetlands by using anaerobic digesters as pre-treatment. Ecol Eng 52:262–269

    Article  Google Scholar 

  76. Jing Z, He R, Hu Y, Niu Q, Cao S, Li Y-Y (2015) Practice of integrated system of biofilter and constructed wetland in highly polluted surface water treatment. Ecol Eng 75:462–469

    Article  Google Scholar 

  77. Bakhshoodeh R, Alavi N, Majlesi M, Paydary P (2017) Compost leachate treatment by a pilot-scale subsurface horizontal flow constructed wetland. Ecol Eng 105:7–14. https://doi.org/10.1016/j.ecoleng.2017.04.058. ISSN 0925-8574

    Article  Google Scholar 

  78. Moqsud MA, Yoshitake J, Bushra QS, Hyodo M, Omine K, Strik D (2015) Compost in plant microbial fuel cell for bioelectricity generation. Waste Manag 36:63–69. Retrieved from www.elsevier.com/locate/wasman

    Article  CAS  Google Scholar 

  79. Anderson KR, Shafahi M, Shihadeh S, Perez P, Kampen B, McNamara C (2016) Case study of a solar tower/compost waste-to-energy test facility. J Solid Waste Technol Manage 42:697–708. Retrieved from proxy.ulib.csuohio.edu

    Google Scholar 

  80. Sims R et al (2014) Transport climate change 2014: mitigation of climate change. In: Edenhofer O et al (eds) Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 1–115

    Google Scholar 

  81. Dou Z, Toth JD, Westendorf ML (2018) Food waste for livestock feeding: feasibility, safety, and sustainability implications. Glob Food Sec 17:154–161. https://doi.org/10.1016/j.gfs.2017.12.003. ISSN 2211-9124

    Article  Google Scholar 

  82. Hubert Heitman CA Jr, Perry LK (1956) Gamboa, swine feeding experiments with cooked residential garbage. J Anim Sci 15(4):1072–1077. https://doi.org/10.2527/jas1956.1541072x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Glossary

Biological process

Biological processes are those processes that are vital for an organism to live, and that shape its capacities for interacting with its environment.

Composting

This process recycles various organic materials otherwise regarded as waste products and produces a soil conditioner (the compost).

Constructed wetlands

A constructed wetland is an engineered sequence of water bodies designed to filter and treat waterborne pollutants found in sewage, industrial effluent, or storm water runoff.

Electric field induction

The production of an electromotive force (i.e., voltage) across an electrical conductor in a changing magnetic field.

Food-processing waste

Food-processing wastes contain a high amount of organic components that could be converted into energy and then recovered in the form of heat or electricity.

Maggot farming

Maggot farming is the act of growing maggots for industry.

Microbial fuel cells

A microbial fuel cell (MFC) is a bioelectrochemical system that drives an electric current by using bacteria and a high-energy oxidant such as O2, mimicking bacterial interactions found in nature.

Vermicompost

Vermicompost is the product of earthworm digestion and aerobic decomposition using the activities of micro- and macroorganisms at room temperature.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hung, YT., Holloman, K. (2021). Composting for Food Processing Wastes. In: Wang, L.K., Wang, MH.S., Hung, YT. (eds) Integrated Natural Resources Research. Handbook of Environmental Engineering, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-61002-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61002-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61001-2

  • Online ISBN: 978-3-030-61002-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics