Skip to main content

Location Optimization of Urban Emergency Medical Service Stations: A Hierarchical Multi-objective Model with a New Encoding Method of Genetic Algorithm Solution

  • Conference paper
  • First Online:
Web and Wireless Geographical Information Systems (W2GIS 2020)

Abstract

Since patients’ lives are closely bound up with emergency medical services, extensive studies to improve the quality of emergency services haves been receiving special attention. This paper presents a novel hierarchical multi-objective optimization model that considers the goal of providing effectiveness equal service for all citizens firstly, reducing the total travel cost of emergency medical service missions and the number of overall stations secondly, retaining as many existing stations as possible lastly to improve both the effectiveness equity and the efficiency of emergency medical service and reduce the financial cost. New methods of chromosome coding, crossover operation and mutation operation for preserving spatial configuration of regional variables in the process of genetic algorithm are developed and used to optimize locations of EMS stations in Shanghai, China. The results demonstrate that better planning of emergency medical service stations whose service area cover all area within 4 km can reduce travel costs by 70% with 13 new built up and 8 existing stations. Due to these promising results, the new encoded methods applied in this study are not only viable but also can be used in other urban areas to improve effectiveness equity of the emergency medical service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karbakhsh, M., Zandi, N., Rouzrokh, M., Zarei, M.: Injury epidemiology in Kermanshah: The National Trauma Project in Islamic Republic of Iran. Eastern Mediterranean health journal = La revue de santé de la Méditerranée orientale = al-Majallah al-ṣiḥḥīyah li-sharq al-mutawassiṭ 15, 57–64 (2009)

    Google Scholar 

  2. Wilde, E.: Do emergency medical system response times matter for health outcomes? Health Econ. 22, 790–806 (2013)

    Article  Google Scholar 

  3. O’Keeffe, C., Nicholl, J., Turner, J., Goodacre, S.: Role of ambulance response times in the survival of patients with out-of-hospital cardiac arrest. Emerg. Med. J.: EMJ 28, 703–706 (2011)

    Article  Google Scholar 

  4. Gonzalez, R., Cummings, G., Phelan, H., Mulekar, M., Rodning, C.: Does increased emergency medical services prehospital time affect patient mortality in rural motor vehicle crash? A statewide analysis. Am. J. Surg. 197, 30–34 (2008)

    Article  Google Scholar 

  5. Bélanger, V., Ruiz, A., Soriano, P.: Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles. Eur. J. Oper. Res. 272, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  6. Eschmann, N., Pirrallo, R., Aufderheide, T., Lerner, E.: The association between emergency medical services staffing patterns and out-of-hospital cardiac arrest survival. Prehosp. Emerg. Care: Off. J. Natl. Assoc. EMS Physicians Natl. Assoc. State EMS Dir. 14, 71–77 (2009)

    Article  Google Scholar 

  7. Lujak, M., Billhardt, H.: A distributed algorithm for dynamic break scheduling in emergency service fleets. In: An, B., Bazzan, A., Leite, J., Villata, S., van der Torre, L. (eds.) PRIMA 2017. LNCS (LNAI), vol. 10621, pp. 477–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69131-2_30

    Chapter  Google Scholar 

  8. Weaver, M., Patterson, P., Fabio, A., Moore, C., Freiberg, M., Songer, T.: The association between weekly work hours, crew familiarity, and occupational injury and illness in emergency medical services workers. Am. J. Ind. Med. 58, 1270–1277 (2015)

    Article  Google Scholar 

  9. Bandara, D., Mayorga, M., Albert, L.: Optimal dispatching strategies for emergency vehicles to increase patient survivability. Int. J. Oper. Res. 15, 195–214 (2012)

    Article  MathSciNet  Google Scholar 

  10. Carter, G., Chaiken, J., Ignall, E.: Response area for two emergency units. Oper. Res. 20, 571–594 (1972)

    Article  MathSciNet  Google Scholar 

  11. Schmid, V.: Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. Eur. J. Oper. Res. 219, 611–621 (2012)

    Article  MathSciNet  Google Scholar 

  12. Tlili, T., Harzi, M., Krichen, S.: Swarm-based approach for solving the ambulance routing problem. Proc. Comput. Sci. 112, 350–357 (2017)

    Article  Google Scholar 

  13. Karasakal, O., Karasakal, E.: A maximal covering location model in the presence of partial coverage. Comput. Oper. Res. 31, 1515–1526 (2004)

    Article  MathSciNet  Google Scholar 

  14. Atta, S., Sinha Mahapatra, P.R., Mukhopadhyay, A.: Solving maximal covering location problem using genetic algorithm with local refinement. Soft. Comput. 22(12), 3891–3906 (2017). https://doi.org/10.1007/s00500-017-2598-3

    Article  Google Scholar 

  15. Reilly, J., Mirchandani, P.: Development and application of a fire station placement model. Fire Technol. 21, 181–198 (1985). https://doi.org/10.1007/BF01039973

    Article  Google Scholar 

  16. Richard, D., Beguin, H., Peeters, D.: The location of fire stations in a rural environment: a case study. Environ. Plan. A 22, 39–52 (1990)

    Article  Google Scholar 

  17. Berman, O., Kaplan, E.: Equity maximizing facility location schemes. Transp. Sci. 24, 137–144 (1990)

    Article  MathSciNet  Google Scholar 

  18. Brill, E., Liebman, J., ReVelle, C.: Equity measures for exploring water quality management alternatives. Water Resour. Res. 12, 845–851 (1976)

    Article  Google Scholar 

  19. Erkut, E., Neuman, S.: A multiobjective model for locating undesirable facilities. Ann. Oper. Res. 40, 209–227 (1993). https://doi.org/10.1007/BF02060478

    Article  MATH  Google Scholar 

  20. Kincaid, R., Maimon, O.: Locating a point of minimum variance on triangular graphs. Transp. Sci. 23, 216–219 (1989)

    Article  MathSciNet  Google Scholar 

  21. Espejo, I., Marín, A., Puerto, J., Rodríguez-Chía, A.: A comparison of formulations and solution methods for the minimum-envy location problem. Comput. Oper. Res. - CoR 36, 1966–1981 (2009)

    Article  Google Scholar 

  22. Chanta, S., Mayorga, M., Kurz, M., Albert, L.: The minimum p-envy location problem: a new model for equitable distribution of emergency resources. IIE Trans. Healthc. Syst. Eng. 1, 101–115 (2011)

    Article  Google Scholar 

  23. Chanta, S., Mayorga, M., Albert, L.: The minimum p-envy location problem with requirement on minimum survival rate. Comput. Ind. Eng. 74, 228–239 (2014)

    Article  Google Scholar 

  24. Araz, C., Selim, H., Ozkarahan, I.: A fuzzy multi-objective covering-based vehicle location model for emergency services. Comput. Oper. Res. 34, 705–726 (2007)

    Article  Google Scholar 

  25. Yao, J., Zhang, X.: Location optimization of fire stations: trade-off between accessibility and service coverage. In: International Conference on GIScience Short Paper Proceedings, vol. 1 (2016)

    Google Scholar 

  26. Esmaelian, M., Tavana, M., Santos Arteaga, F., Mohammadi, S.: A multicriteria spatial decision support system for solving emergency service station location problems. Int. J. Geogr. Inf. Sci. 29, 1187–1213 (2015)

    Article  Google Scholar 

  27. Flamand, T., Ghoniem, A., Haouari, M., Maddah, B.: Integrated assortment planning and store-wide shelf space allocation: an optimization-based approach. Omega 81, 134–149 (2017)

    Article  Google Scholar 

  28. He, D., Jia, R.: Cloud model-based Artificial Bee Colony Algorithm’s application in the logistics location problem. In: 2012 International Conference on Information Management, Innovation Management and Industrial Engineering (ICIII), pp. 256–259. IEEE Press (2012)

    Google Scholar 

  29. Quintero-Araujo, C., Gruler, A., Juan, A., Faulin, J.: Using horizontal cooperation concepts in integrated routing and facility-location decisions. Int. Trans. Oper. Res. 26, 551–576 (2017)

    Article  MathSciNet  Google Scholar 

  30. Colome Perales, R., Lourenço, H., Serra, D.: A new chance-constrained maximum capture location problem. Ann. Oper. Res. 122, 121–139 (2003). https://doi.org/10.1023/A:1026194423072

    Article  MathSciNet  MATH  Google Scholar 

  31. Albert, L., Mayorga, M.: A dispatching model for server-to-customer systems that balances efficiency and equity. Manuf. Serv. Oper. Manag. 15, 205–220 (2013)

    Article  Google Scholar 

  32. Enayati, S., Mayorga, M., Toro-Díaz, H., Albert, L.: Identifying trade-offs in equity and efficiency for simultaneously optimizing location and multipriority dispatch of ambulances. Int. Trans. Oper. Res. 26, 415–438 (2018)

    Article  MathSciNet  Google Scholar 

  33. Current, J., Revelle, C., Cohon, J.: An interactive approach to identify the best compromise solution for two objective shortest path problems. Comput. Oper. Res. 17, 187–198 (1990)

    Article  MathSciNet  Google Scholar 

  34. Tran, K.: Elitist Non-Dominated Sorting GA-II (NSGA-II) as a parameter-less multi-objective genetic algorithm. In: Proceedings, pp. 359–367. IEEE, FL, USA (2005)

    Google Scholar 

  35. van Barneveld, T.C., Bhulai, S., van der Mei, R.D.: A dynamic ambulance management model for rural areas. Health Care Manag. Sci. 20(2), 165–186 (2015). https://doi.org/10.1007/s10729-015-9341-3

    Article  Google Scholar 

  36. Shariat, A., Babaei, M., Moadi, S., Amiripour, S.: Linear upper-bound unavailability set covering models for locating ambulances: application to Tehran rural roads. Eur. J. Oper. Res. 221, 263–272 (2012)

    Article  Google Scholar 

  37. Su, Q., Luo, Q., Huang, S.: Cost-effective analyses for emergency medical services deployment: a case study in Shanghai. Int. J. Prod. Econ. 163, 112–123 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to anonymous reviewers for insightful observations and suggestions that helped to improve our paper. This work is partially supported by the projects funded by the National Nature Science Foundation of China (grant numbers: 41771410 and 41401173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, J., Li, X., Mango, J. (2020). Location Optimization of Urban Emergency Medical Service Stations: A Hierarchical Multi-objective Model with a New Encoding Method of Genetic Algorithm Solution. In: Di Martino, S., Fang, Z., Li, KJ. (eds) Web and Wireless Geographical Information Systems. W2GIS 2020. Lecture Notes in Computer Science(), vol 12473. Springer, Cham. https://doi.org/10.1007/978-3-030-60952-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60952-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60951-1

  • Online ISBN: 978-3-030-60952-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics