Skip to main content

Cross-Resolution Deep Features Based Image Search

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2020)

Abstract

Deep Learning models proved to be able to generate highly discriminative image descriptors, named deep features, suitable for similarity search tasks such as Person Re-Identification and Image Retrieval. Typically, these models are trained by employing high-resolution datasets, therefore reducing the reliability of the produced representations when low-resolution images are involved. The similarity search task becomes even more challenging in the cross-resolution scenarios, i.e., when a low-resolution query image has to be matched against a database containing descriptors generated from images at different, and usually high, resolutions. To solve this issue, we proposed a deep learning-based approach by which we empowered a ResNet-like architecture to generate resolution-robust deep features. Once trained, our models were able to generate image descriptors less brittle to resolution variations, thus being useful to fulfill a similarity search task in cross-resolution scenarios. To asses their performance, we used synthetic as well as natural low-resolution images. An immediate advantage of our approach is that there is no need for Super-Resolution techniques, thus avoiding the need to synthesize queries at higher resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://qmul-tinyface.github.io/.

References

  1. Alzu’bi, A., Amira, A., Ramzan, N.: Content-based image retrieval with compact deep convolutional features. Neurocomputing 249, 95–105 (2017)

    Article  Google Scholar 

  2. Amato, G., Falchi, F., Gennaro, C., Vadicamo, L.: Deep permutations: deep convolutional neural networks and permutation-based indexing. In: Amsaleg, L., Houle, M.E., Schubert, E. (eds.) SISAP 2016. LNCS, vol. 9939, pp. 93–106. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46759-7_7

    Chapter  Google Scholar 

  3. Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_38

    Chapter  Google Scholar 

  4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  5. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)

    Google Scholar 

  6. Cheng, Z., Zhu, X., Gong, S.: Surveillance face recognition challenge. arXiv preprint arXiv:1804.09691 (2018)

  7. Chiu, C.C., et al.: State-of-the-art speech recognition with sequence-to-sequence models. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4774–4778. IEEE (2018)

    Google Scholar 

  8. Deng, L., Liu, Y. (eds.): Deep Learning in Natural Language Processing. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5209-5

    Book  Google Scholar 

  9. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  10. Han, J., Zhang, D., Cheng, G., Liu, N., Xu, D.: Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process. Mag. 35(1), 84–100 (2018)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  13. Jain, A.K., Vailaya, A.: Image retrieval using color and shape. Pattern Recogn. 29(8), 1233–1244 (1996)

    Article  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Lin, K., Yang, H.F., Hsiao, J.H., Chen, C.S.: Deep learning of binary hash codes for fast image retrieval. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 27–35 (2015)

    Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Massoli, F.V., Amato, G., Falchi, F.: Cross-resolution learning for face recognition. Image Vision Comput. 103927 (2020)

    Google Scholar 

  18. Massoli, F.V., Amato, G., Falchi, F., Gennaro, C., Vairo, C.: Improving multi-scale face recognition using VGGFace2. In: Cristani, M., Prati, A., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11808, pp. 21–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30754-7_3

    Chapter  Google Scholar 

  19. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activations. arXiv preprint arXiv:1511.05879 (2015)

  20. Torresani, L., Szummer, M., Fitzgibbon, A.: Efficient object category recognition using classemes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 776–789. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_56

    Chapter  Google Scholar 

  21. Tzelepi, M., Tefas, A.: Deep convolutional learning for content based image retrieval. Neurocomputing 275, 2467–2478 (2018)

    Article  Google Scholar 

  22. Zou, W.W., Yuen, P.C.: Very low resolution face recognition problem. IEEE Trans. Image Process. 21(1), 327–340 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research has been funded by the Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo" (ISTI) of the National Research Council (CNR). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Valerio Massoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Massoli, F.V., Falchi, F., Gennaro, C., Amato, G. (2020). Cross-Resolution Deep Features Based Image Search. In: Satoh, S., et al. Similarity Search and Applications. SISAP 2020. Lecture Notes in Computer Science(), vol 12440. Springer, Cham. https://doi.org/10.1007/978-3-030-60936-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60936-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60935-1

  • Online ISBN: 978-3-030-60936-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics