Skip to main content

A Review of Artificial Intelligence Applications in Mining and Geological Engineering

  • Conference paper
  • First Online:
Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining

Abstract

Artificial intelligence (AI) is well-known as a robust technique that can support and improve the quality of human life. In the mining industry, applications of AI changed the sciences and technologies, as well as the performance of the mining industry, especially in mining and geological engineering. Smart mines were introduced and widely applied around the world with advanced technologies based on the applications of AI. This paper aims to provide a comprehensive view of AI applications in mining and geological engineering, as well as the ideas for studies in the future. The paper focuses on the published papers of AI applications in rock mechanics, mining method selection, mining equipment, drilling-blasting, slope stability, environmental issues, and relevant geological engineering. The advantages and disadvantages of AI applications in mining and geological engineering will be analyzed and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balzani, V., Armaroli, N.: Energy for a Sustainable World: From the Oil Age to a Sun-Powered Future. Wiley, Hoboken (2010)

    Google Scholar 

  2. Fujii, H., Takahashi, K., Yamashita, Y.: Application of titanium and its alloys for automobile parts. Shinnittetsu giho 62–67 (2003)

    Google Scholar 

  3. Schauerte, O.: Titanium in automotive production. Adv. Eng. Mater. 5, 411–418 (2003)

    Article  Google Scholar 

  4. Liedl, G., Bielak, R., Ivanova, J., Enzinger, N., Figner, G., Bruckner, J., Pasic, H., Pudar, M., Hampel, S.: Joining of aluminum and steel in car body manufacturing. Phys. Procedia 12, 150–156 (2011)

    Article  Google Scholar 

  5. Wu, S., Yan, T., Kuai, Z., Pan, W.: Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Materials (2019)

    Google Scholar 

  6. Jang, H., Topal, E.: A review of soft computing technology applications in several mining problems. Appl. Soft Comput. 22, 638–651 (2014)

    Article  Google Scholar 

  7. Azcue, J.M.: Environmental Impacts of Mining Activities: Emphasis on Mitigation and Remedial Measures. Springer, Heidelberg (2012)

    Google Scholar 

  8. Tacher, L., Pomian-Srzednicki, I., Parriaux, A.: Geological uncertainties associated with 3-D subsurface models. Comput. Geosci. 32, 212–221 (2006)

    Article  Google Scholar 

  9. Baghbanan, A., Kefayati, S., Torkan, M., Hashemolhosseini, H., Narimani, R.: Numerical probabilistic analysis for slope stability in fractured rock masses using DFN-DEM approach. Int. J. Mining Geo-Eng. 51, 79–90 (2017)

    Google Scholar 

  10. Ehlers, L.B.: Uncertainties in groundwater-surface water modelling for the HOBE catchment. Department of Geosciences and Natural Resource Management, Faculty of … (2018)

    Google Scholar 

  11. Nguyen, N.V.: Building DEM for deep open-pit coal mines using DJI Inspire 2 (in Vietnames). J. Mining Earth Sci. 61, 1–10 (2020)

    Google Scholar 

  12. Bitarafan, M., Ataei, M.: Mining method selection by multiple criteria decision making tools. J. Southern Afr. Inst. Mining Metal. 104, 493–498 (2004)

    Google Scholar 

  13. Domingues, M.S., Baptista, A.L., Diogo, M.T.: Engineering complex systems applied to risk management in the mining industry. Int. J. Mining Sci. Technol. 27, 611–616 (2017)

    Article  Google Scholar 

  14. Newman, A.M., Rubio, E., Caro, R., Weintraub, A., Eurek, K.: A review of operations research in mine planning. Interfaces 40, 222–245 (2010)

    Article  Google Scholar 

  15. Dimitrakopoulos, R., Martinez, L., Ramazan, S.: A maximum upside/minimum downside approach to the traditional optimization of open pit mine design. J. Mining Sci. 43, 73–82 (2007)

    Article  Google Scholar 

  16. Galić, I., Janković, B., Mrakovčić, I.: An another way for open pit mine design optimization–floating slopes method. Rudarsko-geološko-naftni zbornik 21, 103–111 (2009)

    Google Scholar 

  17. Kahriman, A., Ozer, U., Aksoy, M., Karadogan, A., Tuncer, G.: Environmental impacts of bench blasting at Hisarcik Boron open pit mine in Turkey. Environ. Geol. 50, 1015–1023 (2006)

    Article  Google Scholar 

  18. Duan, B., Xia, H., Yang, X.: Impacts of bench blasting vibration on the stability of the surrounding rock masses of roadways. Tunnelling Underground Space Technol. 71, 605–622 (2018)

    Article  Google Scholar 

  19. Torres, V.N., Silveira, L.G., Lopes, P.F., de Lima, H.M.: Assessing and controlling of bench blasting-induced vibrations to minimize impacts to a neighboring community. J. Cleaner Prod. 187, 514–524 (2018)

    Article  Google Scholar 

  20. Duncan, J.M., Wright, S.G., Brandon, T.L.: Soil Strength and Slope Stability. Wiley, Hoboken (2014)

    Google Scholar 

  21. Sjöberg, J.: Large scale slope stability in open pit mining: a review. Luleå tekniska universitet (1996)

    Google Scholar 

  22. Zahri, F., Boukelloul, M.L., Hadji, R., Talhi, K.: Slope stability analysis in open pit mines of Jebel Gustar career, NE Algeria–a multi-steps approach. Mining Sci. 23 (2016)

    Google Scholar 

  23. Hobba Jr., W.A.: Effects of underground mining and mine collapse on the hydrology of selected basins in West Virginia. USGPO; US Geological Survey, Map Distribution (1993)

    Google Scholar 

  24. Stevens, P.R.: A review of the effects of earthquakes on underground mines. US Geological Survey (1977)

    Google Scholar 

  25. Karacan, C.Ö., Ruiz, F.A., Cotè, M., Phipps, S.: Coal mine methane: a review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. Int. J. Coal Geol. 86, 121–156 (2011)

    Article  Google Scholar 

  26. Diamond, W.P.: Methane Control for Underground Coal Mines: Chapter 11 (1993)

    Google Scholar 

  27. Kurnia, J.C., Sasmito, A.P., Mujumdar, A.S.: CFD simulation of methane dispersion and innovative methane management in underground mining faces. Appl. Math. Modelling 38, 3467–3484 (2014)

    Article  Google Scholar 

  28. Jing, L.: A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Mining Sci. 40, 283–353 (2003)

    Article  Google Scholar 

  29. Nguyen, A.T., Pham, V.V., Le, V.Q., Nguyen, T.A., Le, T.H.: Determining for an output capacity of dimension stone exploitation from the computer simulations to generate the fracture network in 3D: case study in some dimensional stone quarries in Vietnam. Inżynieria Mineralna 21 (2019)

    Google Scholar 

  30. Sonmez, H., Gokceoglu, C., Nefeslioglu, H., Kayabasi, A.: Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int. J. Rock Mech. Mining Sci. 43, 224–235 (2006)

    Article  Google Scholar 

  31. Ocak, I., Seker, S.E.: Estimation of elastic modulus of intact rocks by artificial neural network. Rock Mech. Rock Eng. 45, 1047–1054 (2012)

    Article  Google Scholar 

  32. Majdi, A., Beiki, M.: Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses. Int. J. Rock Mech. Mining Sci. 47, 246–253 (2010)

    Article  Google Scholar 

  33. Rukhaiyar, S., Samadhiya, N.: A polyaxial strength model for intact sandstone based on Artificial Neural Network. Int. J. Rock Mech. Mining Sci. 95, 26–47 (2017)

    Article  Google Scholar 

  34. Rashidi, M., Hajipour, M., Asadi, A.: Correlation between static and dynamic elastic modulus of limestone formations using artificial neural networks. In: 52nd US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association

    Google Scholar 

  35. Dong, L.-J., Li, X.-B., Kang, P.: Prediction of rockburst classification using Random Forest. Trans. Nonferrous Metals Soc. China 23, 472–477 (2013)

    Article  Google Scholar 

  36. Zhou, K., Yun, L., Deng, H., Li, J., Liu, C.: Prediction of rock burst classification using cloud model with entropy weight. Trans. Nonferrous Metals Soc. China 26, 1995–2002 (2016)

    Google Scholar 

  37. Shirani Faradonbeh, R., Taheri, A.: Long-term prediction of rockburst hazard in deep underground openings using three robust data mining techniques. Eng. Comput. 35(2), 659–675 (2018). https://doi.org/10.1007/s00366-018-0624-4

    Article  Google Scholar 

  38. Zhou, J., Koopialipoor, M., Li, E., Armaghani, D.J.: Prediction of rockburst risk in underground projects developing a neuro-bee intelligent system. Bull. Eng. Geol. Environ. (2020)

    Google Scholar 

  39. Dou, L., Lu, C., Mu, Z., Gao, M.: Prevention and forecasting of rock burst hazards in coal mines. Mining Sci. Technol. (China) 19, 585–591 (2009)

    Google Scholar 

  40. Yun, Q., Huang, G.: A fuzzy set approach to the selection of mining method. Mining Sci. Technol. 6, 9–16 (1987)

    Article  Google Scholar 

  41. Guray, C., Celebi, N., Atalay, V., Pasamehmetoglu, A.G.: Ore-age: a hybrid system for assisting and teaching mining method selection. Expert Syst. Appl. 24, 261–271 (2003)

    Google Scholar 

  42. Naghadehi, M.Z., Mikaeil, R., Ataei, M.: The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine Iran. Expert Syst. Applications 36, 8218–8226 (2009)

    Article  Google Scholar 

  43. Azadeh, A., Osanloo, M., Ataei, M.: A new approach to mining method selection based on modifying the Nicholas technique. Appl. Soft Comput. 10, 1040–1061 (2010)

    Article  Google Scholar 

  44. Nicholas, H.: Method selection-A numerical approach, Design and operation of mines methods. AIME

    Google Scholar 

  45. Özfırat, M.: A fuzzy method for selecting underground coal mining method considering mechanization criteria. J. Mining Sci. 48, 533–544 (2012)

    Article  Google Scholar 

  46. Dehghani, H., Siami, A., Haghi, P.: A new model for mining method selection based on grey and TODIM methods. J. Mining Environ. 8, 49–60 (2017)

    Google Scholar 

  47. Fu, Z., Wu, X., Liao, H., Herrera, F.: Underground mining method selection with the hesitant fuzzy linguistic gained and lost dominance score method. IEEE Access 6, 66442–66458 (2018)

    Article  Google Scholar 

  48. Liang, W., Zhao, G., Hong, C.: Selecting the optimal mining method with extended multi-objective optimization by ratio analysis plus the full multiplicative form (MULTIMOORA) approach. Neural Comput. Appl. 31(10), 5871–5886 (2018). https://doi.org/10.1007/s00521-018-3405-5

    Article  Google Scholar 

  49. Burt, C.N., Caccetta, L.: Equipment selection for surface mining: a review. Interfaces 44, 143–162 (2014)

    Article  Google Scholar 

  50. Blackwell, G.H.: Estimation of large open pit haulage truck requirements. CIM Bull. 143–149 (1999)

    Google Scholar 

  51. Bozorgebrahimi, E., Hall, R., Blackwell, G.: Sizing equipment for open pit mining–a review of critical parameters. Mining Technol. 112, 171–179 (2003)

    Article  Google Scholar 

  52. Bascetin, A., Kesimal, A.: The study of a fuzzy set theory for the selection of an optimum coal transportation system from pit to the power plant. Int. J. Surface Mining Reclamation Environ. 13, 97–101 (1999)

    Article  Google Scholar 

  53. Haidar, A., Naoum, S., Howes, R., Tah, J.: Genetic algorithms application and testing for equipment selection. J. Constr. Eng. Manag. 125, 32–38 (1999)

    Article  Google Scholar 

  54. Vagenas, N., Nuziale, T.: Genetic algorithms for reliability assessment of mining equipment. J. Qual. Maintenance Eng. (2001)

    Google Scholar 

  55. Başçetin, A., Öztaş, O., Kanli, A.: EQS: a computer software using fuzzy logic for equipment selection in mining engineering. J. South Afr. Inst. Min. Metall. 106, 63–70 (2006)

    Google Scholar 

  56. Bazzazi, A.A., Karimi, B.: Optimal open pit mining equipment selection using fuzzy multiple attribute decision making approach. In: Seventeenth International Symposium on Mine Planning and Equipment Selection (MPES 2008)(第十七届矿山规划和设备选型国际研讨会), pp. 253–268. 中国有色金属工业协会; 中国钢铁工业协会; 中国冶金矿山企业协会 (2008)

    Google Scholar 

  57. Aghajani Bazzazi, A., Osanloo, M., Karimi, B.: A new fuzzy multi criteria decision making model for open pit mines equipment selection. Asia-Pacific J. Oper. Res. 28, 279–300 (2011)

    Google Scholar 

  58. Ahmad, M.T., Mondal, S.: Dynamic supplier selection approach for mining equipment company. J. Model. Manag. (2019)

    Google Scholar 

  59. Samatemba, B., Zhang, L., Besa, B.: Evaluating and optimizing the effectiveness of mining equipment; the case of Chibuluma South underground mine. J. Clean. Prod. 252, 119697 (2020)

    Article  Google Scholar 

  60. Gokhale, B.V.: Rotary drilling and blasting in large surface mines. CRC Press (2010)

    Google Scholar 

  61. Hrehová, D., Cehlár, M., Rybár, R., Mitterpachová, N.: Mining technology with drilling-blasting operations. Int. Multidisc. Sci. GeoConference: SGEM: Surv. Geol. Mining Ecol. Manag. 1, 675 (2012)

    Google Scholar 

  62. AyalaCarcedo, F.: Drilling and Blasting of Rocks. Routledge (2017)

    Google Scholar 

  63. Rustan, A., Cunningham, C., Fourney, W., Spathis, A., Simha, K.: Mining and Rock Construction Technology Desk Reference: Rock Mechanics, Drilling & Blasting. CRC Press (2010)

    Google Scholar 

  64. Akin, S., Karpuz, C.: Estimating drilling parameters for diamond bit drilling operations using artificial neural networks. Int. J. Geomech. 8, 68–73 (2008)

    Article  Google Scholar 

  65. Bhatnagar, A., Khandelwal, M.: An intelligent approach to evaluate drilling performance. Neural Comput. Appl. 21, 763–770 (2012)

    Article  Google Scholar 

  66. Lind, Y.B., Kabirova, A.R.: Artificial neural networks in drilling troubles prediction. In: SPE Russian Oil and Gas Exploration & Production Technical Conference and Exhibition. Society of Petroleum Engineers, (2014)

    Google Scholar 

  67. Fattahi, H., Bazdar, H.: Applying improved artificial neural network models to evaluate drilling rate index. Tunn. Undergr. Space Technol. 70, 114–124 (2017)

    Article  Google Scholar 

  68. Al-AbdulJabbar, A., Elkatatny, S., Mahmoud, M., Abdulraheem, A.: Predicting rate of penetration using artificial intelligence techniques. In: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition. Society of Petroleum Engineers (2018)

    Google Scholar 

  69. Sabah, M., Talebkeikhah, M., Wood, D.A., Khosravanian, R., Anemangely, M., Younesi, A.: A machine learning approach to predict drilling rate using petrophysical and mud logging data. Earth Sci. Inf. 12(3), 319–339 (2019). https://doi.org/10.1007/s12145-019-00381-4

    Article  Google Scholar 

  70. Liao, X., Khandelwal, M., Yang, H., Koopialipoor, M., Murlidhar, B.R.: Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques. Eng. Comput. 36(2), 499–510 (2019). https://doi.org/10.1007/s00366-019-00711-6

    Article  Google Scholar 

  71. Khandelwal, M., Singh, T.: Prediction of blast-induced ground vibration using artificial neural network. Int. J. Rock Mech. Min. Sci. 46, 1214–1222 (2009)

    Article  Google Scholar 

  72. Monjezi, M., Ahmadi, M., Sheikhan, M., Bahrami, A., Salimi, A.: Predicting blast-induced ground vibration using various types of neural networks. Soil Dyn. Earthquake Eng. 30, 1233–1236 (2010)

    Article  Google Scholar 

  73. Monjezi, M., Ghafurikalajahi, M., Bahrami, A.: Prediction of blast-induced ground vibration using artificial neural networks. Tunn. Undergr. Space Technol. 26, 46–50 (2011)

    Article  Google Scholar 

  74. Nguyen, H., Bui, X.-N., Bui, H.-B., Mai, N.-L.: A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine Vietnam. Neural Comput. Appl. 32, 3939–3955 (2020)

    Article  Google Scholar 

  75. Hajihassani, M., Jahed Armaghani, D., Monjezi, M., Mohamad, E.T., Marto, A.: Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environ. Earth Sci. 74(4), 2799–2817 (2015). https://doi.org/10.1007/s12665-015-4274-1

    Article  Google Scholar 

  76. Nguyen, H., Bui, X.-N.: Predicting blast-induced air overpressure: a robust artificial intelligence system based on artificial neural networks and random forest. Nat. Resour. Res. 28, 893–907 (2019)

    Article  Google Scholar 

  77. Marto, A., Hajihassani, M., Jahed Armaghani, D., Tonnizam Mohamad, E., Makhtar, A.M.: A novel approach for blast-induced flyrock prediction based on imperialist competitive algorithm and artificial neural network. Sci. World J. 2014 (2014)

    Google Scholar 

  78. Trivedi, R., Singh, T., Raina, A.: Prediction of blast-induced flyrock in Indian limestone mines using neural networks. J. Rock Mech. Geotech. Eng. 6, 447–454 (2014)

    Article  Google Scholar 

  79. Nguyen, H., Bui, X.-N., Tran, Q.-H., Le, T.-Q., Do, N.-H.: Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam. SN Appl. Sci. 1, 125 (2019)

    Article  Google Scholar 

  80. Amiri, M., Amnieh, H.B., Hasanipanah, M., Khanli, L.M.: A new combination of artificial neural network and K-nearest neighbors models to predict blast-induced ground vibration and air-overpressure. Eng. Comput. 32, 631–644 (2016)

    Article  Google Scholar 

  81. Saadat, M., Khandelwal, M., Monjezi, M.: An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine Iran. J. Rock Mech. Geotech. Eng. 6, 67–76 (2014)

    Article  Google Scholar 

  82. Hasanipanah, M., Monjezi, M., Shahnazar, A., Armaghani, D.J., Farazmand, A.: Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement 75, 289–297 (2015)

    Article  Google Scholar 

  83. Trivedi, R., Singh, T., Gupta, N.: Prediction of blast-induced flyrock in opencast mines using ANN and ANFIS. Geotech. Geol. Eng. 33, 875–891 (2015)

    Article  Google Scholar 

  84. Jahed Armaghani, D., Hajihassani, M., Marto, A., Shirani Faradonbeh, R., Mohamad, E.T.: Prediction of blast-induced air overpressure: a hybrid AI-based predictive model. Environ. Monit. Assess. 187(11), 1–13 (2015). https://doi.org/10.1007/s10661-015-4895-6

    Article  Google Scholar 

  85. Nguyen, H., Drebenstedt, C., Bui, X.-N., Bui, D.T.: Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Nat. Resour. Res. 29, 691–709 (2019)

    Article  Google Scholar 

  86. Dindarloo, S.R.: Prediction of blast-induced ground vibrations via genetic programming. Int. J. Mining Sci. Technol. 25, 1011–1015 (2015)

    Article  Google Scholar 

  87. Hasanipanah, M., Faradonbeh, R.S., Amnieh, H.B., Armaghani, D.J., Monjezi, M.: Forecasting blast-induced ground vibration developing a CART model. Eng. Comput. 33(2), 307–316 (2016). https://doi.org/10.1007/s00366-016-0475-9

    Article  Google Scholar 

  88. Zhang, X., Nguyen, H., Bui, X.-N., Tran, Q.-H., Nguyen, D.-A., Bui, D.T., Moayedi, H.: Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost. Nat. Resour. Res. 29(2), 711–721 (2019). https://doi.org/10.1007/s11053-019-09492-7

    Article  Google Scholar 

  89. Monjezi, M., Baghestani, M., Shirani Faradonbeh, R., Pourghasemi Saghand, M., Jahed Armaghani, D.: Modification and prediction of blast-induced ground vibrations based on both empirical and computational techniques. Eng. Comput. 32(4), 717–728 (2016). https://doi.org/10.1007/s00366-016-0448-z

    Article  Google Scholar 

  90. Hasanipanah, M., Faradonbeh, R.S., Armaghani, D.J., Amnieh, H.B., Khandelwal, M.: Development of a precise model for prediction of blast-induced flyrock using regression tree technique. Environ. Earth Sci. 76(1), 1–10 (2016). https://doi.org/10.1007/s12665-016-6335-5

    Article  Google Scholar 

  91. Hasanipanah, M., Shahnazar, A., Arab, H., Golzar, S.B., Amiri, M.: Developing a new hybrid-AI model to predict blast-induced backbreak. Eng. Comput. 33(3), 349–359 (2016). https://doi.org/10.1007/s00366-016-0477-7

    Article  Google Scholar 

  92. Jahed Armaghani, D., Hajihassani, M., Sohaei, H., Tonnizam Mohamad, E., Marto, A., Motaghedi, H., Moghaddam, M.R.: Neuro-fuzzy technique to predict air-overpressure induced by blasting. Arab. J. Geosci. 8(12), 10937–10950 (2015). https://doi.org/10.1007/s12517-015-1984-3

    Article  Google Scholar 

  93. Nguyen, H., Bui, X.-N., Bui, H.-B., Cuong, D.T.: Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study. Acta Geophys. 67(2), 477–490 (2019). https://doi.org/10.1007/s11600-019-00268-4

    Article  Google Scholar 

  94. Arthur, C.K., Temeng, V.A., Ziggah, Y.Y.: Novel approach to predicting blast-induced ground vibration using Gaussian process regression. Eng. Comput. 36(1), 29–42 (2019). https://doi.org/10.1007/s00366-018-0686-3

    Article  Google Scholar 

  95. Nguyen, H.: Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: a case study in an open-pit coal mine of Vietnam. SN Appl. Sci. 1, 283 (2019)

    Article  Google Scholar 

  96. Faradonbeh, R.S., Armaghani, D.J., Amnieh, H.B., Mohamad, E.T.: Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm. Neural Comput. Appl. 29(6), 269–281 (2016). https://doi.org/10.1007/s00521-016-2537-8

    Article  Google Scholar 

  97. Hasanipanah, M., Amnieh, H.B., Arab, H., Zamzam, M.S.: Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Comput. Appl. 30(4), 1015–1024 (2016). https://doi.org/10.1007/s00521-016-2746-1

    Article  Google Scholar 

  98. Gao, W., Karbasi, M., Hasanipanah, M., Zhang, X., Guo, J.: Developing GPR model for forecasting the rock fragmentation in surface mines. Eng. Comput. 34(2), 339–345 (2017). https://doi.org/10.1007/s00366-017-0544-8

    Article  Google Scholar 

  99. Asl, P.F., Monjezi, M., Hamidi, J.K., Armaghani, D.J.: Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm. Eng. Comput. 34(2), 241–251 (2017). https://doi.org/10.1007/s00366-017-0535-9

    Article  Google Scholar 

  100. Mojtahedi, S.F.F., Ebtehaj, I., Hasanipanah, M., Bonakdari, H., Amnieh, H.B.: Proposing a novel hybrid intelligent model for the simulation of particle size distribution resulting from blasting. Eng. Comput. 35, 47–56 (2018)

    Article  Google Scholar 

  101. Zhang, S., Bui, X.-N., Trung, N.-T., Nguyen, H., Bui, H.-B.: Prediction of rock size distribution in mine bench blasting using a novel ant colony optimization-based boosted regression tree technique. Nat. Resour. Res. 29, 867–886 (2020)

    Article  Google Scholar 

  102. Zhou, J., Li, C., Arslan, C.A., Hasanipanah, M., Bakhshandeh Amnieh, H.: Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting. Eng. Comput. 2, 1–10 (2019)

    Google Scholar 

  103. Bui, X.-N., Choi, Y., Atrushkevich, V., Nguyen, H., Tran, Q.-H., Long, N.Q., Hoang, H.-T.: Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system. Nat. Resour. Res. 29(2), 771–790 (2019). https://doi.org/10.1007/s11053-019-09573-7

    Article  Google Scholar 

  104. Bui, X.-N., Jaroonpattanapong, P., Nguyen, H., Tran, Q.-H., Long, N.Q.: A novel Hybrid Model for predicting Blast-induced Ground Vibration Based on k-nearest neighbors and particle Swarm optimization. Sci. Rep. 9, 1–14 (2019)

    Article  Google Scholar 

  105. Nguyen, H., Bui, X.-N., Tran, Q.-H., Mai, N.-L.: A new soft computing model for estimating and controlling blast-produced ground vibration based on hierarchical K-means clustering and cubist algorithms. Appl. Soft Comput. 77, 376–386 (2019)

    Article  Google Scholar 

  106. Nguyen, H., Choi, Y., Bui, X.-N., Nguyen-Thoi, T.: Predicting blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms. Sensors 20, 132 (2019)

    Article  Google Scholar 

  107. Shang, Y., Nguyen, H., Bui, X.-N., Tran, Q.-H., Moayedi, H.: A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Nat. Resour. Res. 29(2), 723–737 (2019). https://doi.org/10.1007/s11053-019-09503-7

    Article  Google Scholar 

  108. Amnieh, H.B., Siamaki, A., Soltani, S.: Design of blasting pattern in proportion to the peak particle velocity (PPV): artificial neural networks approach. Saf. Sci. 50, 1913–1916 (2012)

    Article  Google Scholar 

  109. Naghadehi, M.Z., Jimenez, R., KhaloKakaie, R., Jalali, S.-M.E.: A new open-pit mine slope instability index defined using the improved rock engineering systems approach. Int. J. Rock Mech. Min. Sci. 61, 1–14 (2013)

    Article  Google Scholar 

  110. Stacey, T., Xianbin, Y., Armstrong, R., Keyter, G.: New slope stability considerations for deep open pit mines. J. South Afr. Inst. Min. Metall. 103, 373–389 (2003)

    Google Scholar 

  111. Kliche, C.A.: Rock slope stability (1999)

    Google Scholar 

  112. Griffiths, D., Lane, P.: Slope stability analysis by finite elements. Geotechnique 49, 387–403 (1999)

    Article  Google Scholar 

  113. Nian, T.-K., Huang, R.-Q., Wan, S.-S., Chen, G.-Q.: Three-dimensional strength-reduction finite element analysis of slopes: geometric effects. Can. Geotech. J. 49, 574–588 (2012)

    Article  Google Scholar 

  114. Jeremić, B.: Finite element methods for 3D slope stability analysis. Slope Stability 2000, 224–238 (2000)

    Google Scholar 

  115. Griffiths, D., Lu, N.: Unsaturated slope stability analysis with steady infiltration or evaporation using elasto-plastic finite elements. Int. J. Numer. Anal. Meth. Geomech. 29, 249–267 (2005)

    Article  Google Scholar 

  116. Zheng, H., Liu, D., Li, C.: Slope stability analysis based on elasto-plastic finite element method. Int. J. Numer. Meth. Eng. 64, 1871–1888 (2005)

    Article  Google Scholar 

  117. Cheng, Y., Lansivaara, T., Wei, W.: Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput. Geotech. 34, 137–150 (2007)

    Article  Google Scholar 

  118. Chen, Z., Wang, X., Haberfield, C., Yin, J.-H., Wang, Y.: A three-dimensional slope stability analysis method using the upper bound theorem: Part I: theory and methods. Int. J. Rock Mech. Min. Sci. 38, 369–378 (2001)

    Article  Google Scholar 

  119. Ning, Y., An, X., Ma, G.: Footwall slope stability analysis with the numerical manifold method. Int. J. Rock Mech. Min. Sci. 48, 964–975 (2011)

    Article  Google Scholar 

  120. Cao, Z., Wang, Y., Li, D.: Practical reliability analysis of slope stability by advanced Monte Carlo simulations in a spreadsheet. Probabilistic Approaches for Geotechnical Site Characterization and Slope Stability Analysis, pp. 147–167. Springer, Heidelberg (2017)

    Google Scholar 

  121. Sari, P.A., Suhatril, M., Osman, N., Mu’azu, M.A., Dehghani, H., Sedghi, Y., Safa, M., Hasanipanah, M., Wakil, K., Khorami, M., Djuric, S.: An intelligent based-model role to simulate the factor of safe slope by support vector regression. Eng. Comput. 35(4), 1521–1531 (2018). https://doi.org/10.1007/s00366-018-0677-4

    Article  Google Scholar 

  122. Toghroli, A., Darvishmoghaddam, E., Zandi, Y., Parvan, M., Safa, M., Abdullahi, M.M., Heydari, A., Wakil, K., Gebreel, S.A., Khorami, M.: Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method. Comput. Concrete 21, 525–530 (2018)

    Google Scholar 

  123. Safa, M., Sari, P.A., Shariati, M., Suhatril, M., Trung, N.T., Wakil, K., Khorami, M.: Development of neuro-fuzzy and neuro-bee predictive models for prediction of the safety factor of eco-protection slopes. Physica A: Stat. Mech. Appl. 124046 (2020)

    Google Scholar 

  124. Lu, P., Rosenbaum, M.: Artificial neural networks and grey systems for the prediction of slope stability. Nat. Hazards 30, 383–398 (2003)

    Article  Google Scholar 

  125. Choobbasti, A., Farrokhzad, F., Barari, A.: Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran). Arab. J. Geosci. 2, 311–319 (2009)

    Article  Google Scholar 

  126. Yuanyou, X., Xinping, L., Ruigeng, Z.: Engineering geology evaluation method for slope stability based on artificial neural network. Rock Soil Mech. 3 (1996)

    Google Scholar 

  127. Sakellariou, M., Ferentinou, M.: A study of slope stability prediction using neural networks. Geotech. Geol. Eng. 23, 419 (2005)

    Article  Google Scholar 

  128. Chakraborty, A., Goswami, D.: Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN). Arab. J. Geosci. 10(17), 1–11 (2017). https://doi.org/10.1007/s12517-017-3167-x

    Article  Google Scholar 

  129. Kang, F., Li, J., Ma, Z.: An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis. Eng. Optim. 45, 207–223 (2013)

    Article  Google Scholar 

  130. Hoang, N.-D., Pham, A.-D.: Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: a multinational data analysis. Expert Syst. Appl. 46, 60–68 (2016)

    Article  Google Scholar 

  131. Luo, Z., Bui, X.-N., Nguyen, H., Moayedi, H.: A novel artificial intelligence technique for analyzing slope stability using PSO-CA model. Eng. Comput. 17, 1–12 (2019)

    Google Scholar 

  132. Koopialipoor, M., Jahed Armaghani, D., Hedayat, A., Marto, A., Gordan, B.: Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft. Comput. 23(14), 5913–5929 (2018)

    Article  Google Scholar 

  133. Chebrolu, A., Sasmal, S.K., Behera, R.N., Das, S.K.: Prediction of factor of safety for slope stability using advanced artificial intelligence techniques. In: Advanced Engineering Optimization Through Intelligent Techniques, pp. 173–181. Springer, Heidelberg (2020)

    Google Scholar 

  134. Zhou, Y.: Application of artificial neural network in slope stability analysis. Comput. Softw. Media Appl. 2, 16–19 (2019)

    Google Scholar 

  135. Gordan, B., Jahed Armaghani, D., Hajihassani, M., Monjezi, M.: Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng. Comput. 32(1), 85–97 (2015). https://doi.org/10.1007/s00366-015-0400-7

    Article  Google Scholar 

  136. Kang, F., Xu, B., Li, J., Zhao, S.: Slope stability evaluation using Gaussian processes with various covariance functions. Appl. Soft Comput. 60, 387–396 (2017)

    Article  Google Scholar 

  137. Mishra, M., Ramana, G.V., Maity, D.: Multiverse optimisation algorithm for capturing the critical slip surface in slope stability analysis. Geotech. Geol. Eng. 38, 459–474 (2020)

    Article  Google Scholar 

  138. Qi, C., Tang, X.: Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study. Comput. Ind. Eng. 118, 112–122 (2018)

    Article  Google Scholar 

  139. Moayedi, H., Tien Bui, D., Gör, M., Pradhan, B., Jaafari, A.: The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes. ISPRS Int. J. Geo-Inf. 8, 391 (2019)

    Article  Google Scholar 

  140. Fu, X., Sheng, Q., Zhang, Y., Chen, J., Zhang, S., Zhang, Z.: Computation of the safety factor for slope stability using discontinuous deformation analysis and the vector sum method. Comput. Geotech. 92, 68–76 (2017)

    Article  Google Scholar 

  141. Zhou, Y., Cheuk, C., Tham, L.: Numerical modelling of soil nails in loose fill slope under surcharge loading. Comput. Geotech. 36, 837–850 (2009)

    Article  Google Scholar 

  142. Zhou, J., Li, E., Yang, S., Wang, M., Shi, X., Yao, S., Mitri, H.S.: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Saf. Sci. 118, 505–518 (2019)

    Article  Google Scholar 

  143. Bell, F.G., Donnelly, L.J.: Mining and its Impact on the Environment. CRC Press (2006)

    Google Scholar 

  144. Nurmi, P.: Green mining–a holistic concept for sustainable and acceptable mineral production. Ann. Geophys. 60 (2017)

    Google Scholar 

  145. Zhengfu, B., Inyang, H.I., Daniels, J.L., Frank, O., Struthers, S.: Environmental issues from coal mining and their solutions. Mining Sci. Technol. (China) 20, 215–223 (2010)

    Article  Google Scholar 

  146. Qi, R., Liu, T., Jia, Q., Sun, L., Liu, J.: Simulating the sustainable effect of green mining construction policies on coal mining industry of China. J. Clean. Prod. 226, 392–406 (2019)

    Article  Google Scholar 

  147. Oltean, I., Goldan, T., Nistor, C.: Prevention and monitoring environmental impact of open pit coal mining activities. Res. J. Agric. Sci. 50, 259–264 (2018)

    Google Scholar 

  148. Lilic, N., Cvjetic, A., Knezevic, D., Milisavljevic, V., Pantelic, U.: Dust and noise environmental impact assessment and control in Serbian mining practice. Minerals 8, 34 (2018)

    Article  Google Scholar 

  149. Amirshenava, S., Osanloo, M.: A hybrid semi-quantitative approach for impact assessment of mining activities on sustainable development indexes. J. Clean. Prod. 218, 823–834 (2019)

    Article  Google Scholar 

  150. Karacan, C.Ö.: Modeling and prediction of ventilation methane emissions of US longwall mines using supervised artificial neural networks. Int. J. Coal Geol. 73, 371–387 (2008)

    Article  Google Scholar 

  151. Karacan, C.Ö.: Forecasting gob gas venthole production performances using intelligent computing methods for optimum methane control in longwall coal mines. Int. J. Coal Geol. 79, 131–144 (2009)

    Article  Google Scholar 

  152. Smith, G., Du Plessis, J.: Control strategies for coal dust and methane explosions in underground coal mines: current South African research and development initiatives. J. South Afr. Inst. Min. Metall. 99, 117–121 (1999)

    Google Scholar 

  153. Li, W., Wu, X., Jiao, W., Qi, G., Liu, Y.: Modelling of dust removal in rotating packed bed using artificial neural networks (ANN). Appl. Therm. Eng. 112, 208–213 (2017)

    Article  Google Scholar 

  154. Chen, D., Xu, P., Li, R.: Comprehensive depress & removal of dust caused by mining activities in underground coal mine. Mining Eng. 3 (2010)

    Google Scholar 

  155. Li, Y., Zhang, Y., Xu, X., He, L., Serikawa, S., Kim, H.: Dust removal from high turbid underwater images using convolutional neural networks. Opt. Laser Technol. 110, 2–6 (2019)

    Article  Google Scholar 

  156. Karacan, C.Ö.: Development and application of reservoir models and artificial neural networks for optimizing ventilation air requirements in development mining of coal seams. Int. J. Coal Geol. 72, 221–239 (2007)

    Article  Google Scholar 

  157. Hua, F., Liangshan, S.: An optimized control of ventilation in coal mines based on artificial neural network. J. Sci. Eng. (China) 8, 80–83 (2002)

    Google Scholar 

  158. Zhang, X., Dou, S.: The assessment of ventilation system for underground mines based on neural network. Non-ferrous Mining Metallurgy 4 (2005)

    Google Scholar 

  159. Alvarado, M., Gonzalez, F., Fletcher, A., Doshi, A.: Towards the development of a low cost airborne sensing system to monitor dust particles after blasting at open-pit mine sites. Sensors 15, 19667–19687 (2015)

    Article  Google Scholar 

  160. Alvarado, M., Gonzalez, F., Erskine, P., Cliff, D., Heuff, D.: A methodology to monitor airborne PM10 dust particles using a small unmanned aerial vehicle. Sensors 17, 343 (2017)

    Article  Google Scholar 

  161. Lee, S., Choi, Y.: Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry. Geosystem Eng. 19, 197–204 (2016)

    Article  Google Scholar 

  162. Le, C.V., Cao, C.X., Le, V.H., Dinh, T.: Volume computation of quarries in Vietnam based on Unmanned Aerial Vehicle (UAV) data (in Vietnames). J. Mining Earth Sci. 61, 21–30 (2020)

    Article  Google Scholar 

  163. Suh, J., Choi, Y.: Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environ. Earth Sci. 76(4), 1–12 (2017). https://doi.org/10.1007/s12665-017-6458-3

    Article  Google Scholar 

  164. Beretta, F., Rodrigues, A., Peroni, R., Costa, J.: Automated lithological classification using UAV and machine learning on an open cast mine. Appl. Earth Sci. 128, 79–88 (2019)

    Article  Google Scholar 

  165. Patra, A.K., Gautam, S., Majumdar, S., Kumar, P.: Prediction of particulate matter concentration profile in an opencast copper mine in India using an artificial neural network model. Air Qual. Atmos. Health 9(6), 697–711 (2015). https://doi.org/10.1007/s11869-015-0369-9

    Article  Google Scholar 

  166. Bui, X.-N., Lee, C.W., Nguyen, H., Bui, H.-B., Long, N.Q., Le, Q.-T., Nguyen, V.-D., Nguyen, N.-B., Moayedi, H.: Estimating PM10 concentration from drilling operations in open-pit mines using an assembly of SVR and PSO. Appl. Sci. 9, 2806 (2019)

    Article  Google Scholar 

  167. Asif, Z., Chen, Z., Zhu, Z.H.: An integrated life cycle inventory and artificial neural network model for mining air pollution management. Int. J. Environ. Sci. Technol. 16(4), 1847–1856 (2018). https://doi.org/10.1007/s13762-018-1813-9

    Article  Google Scholar 

  168. Nagesha, K.V., Kumar, H., Muralidhar Singh, M.: Development of statistical models to predict emission rate and concentration of particulate matters (PM) for drilling operation in opencast mines. Air Qual. Atmos. Health 12(9), 1073–1079 (2019). https://doi.org/10.1007/s11869-019-00723-7

    Article  Google Scholar 

  169. Daughton, C.G.: Monitoring wastewater for assessing community health: Sewage Chemical-Information Mining (SCIM). Sci. Total Environ. 619, 748–764 (2018)

    Article  Google Scholar 

  170. Cook, N., Sarver, E., Krometis, L.-A.: Putting corporate social responsibility to work in mining communities: Exploring community needs for central Appalachian wastewater treatment. Resources 4, 185–202 (2015)

    Article  Google Scholar 

  171. Wei, L., Liang, L.: Treatment of mining wastewater by nanofiltration. J. Beijing Univ. Chem. Technol 1, 006 (2011)

    Google Scholar 

  172. Iakovleva, E., Sillanpää, M.: The use of low-cost adsorbents for wastewater purification in mining industries. Environ. Sci. Pollut. Res. 20(11), 7878–7899 (2013). https://doi.org/10.1007/s11356-013-1546-8

    Article  Google Scholar 

  173. Benavente, M., Moreno, L., Martinez, J.: Sorption of heavy metals from gold mining wastewater using chitosan. J. Taiwan Inst. Chem. Eng. 42, 976–988 (2011)

    Article  Google Scholar 

  174. Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., Gupta, V.K.: Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018)

    Article  Google Scholar 

  175. Feng, D., Van Deventer, J., Aldrich, C.: Removal of pollutants from acid mine wastewater using metallurgical by-product slags. Sep. Purif. Technol. 40, 61–67 (2004)

    Article  Google Scholar 

  176. Yetilmezsoy, K., Demirel, S.: Artificial neural network (ANN) approach for modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. J. Hazardous Mater. 153, 1288–1300 (2008)

    Google Scholar 

  177. Allahkarami, E., Igder, A., Fazlavi, A., Rezai, B.: Prediction of Co (II) and Ni (II) ions removal from wastewater using artificial neural network and multiple regression models. Physicochem. Probl. Mineral Process. 53 (2017)

    Google Scholar 

  178. Madhloom, H.M.: Modeling of Copper removal from simulated wastewater by adsorption on to fungal biomass using artificial neural network. Global J. Adv. Pure Appl. Sci. 5 (2015)

    Google Scholar 

  179. Lin, W., Jing, L., Zhu, Z., Cai, Q., Zhang, B.: Removal of heavy metals from mining wastewater by Micellar-Enhanced Ultrafiltration (MEUF): experimental investigation and Monte Carlo-based artificial neural network modeling. Water Air Soil Pollut. 228, 206 (2017)

    Article  Google Scholar 

  180. Aryafar, A., Gholami, R., Rooki, R., Ardejani, F.D.: Heavy metal pollution assessment using support vector machine in the Shur River, Sarcheshmeh copper mine. Iran. Environ. Earth Sci. 67, 1191–1199 (2012)

    Article  Google Scholar 

  181. Li, Z., Ma, Z., van der Kuijp, T.J., Yuan, Z., Huang, L.: A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci. Total Environ. 468, 843–853 (2014)

    Article  Google Scholar 

  182. Facchinelli, A., Sacchi, E., Mallen, L.: Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 114, 313–324 (2001)

    Article  Google Scholar 

  183. Solgi, E., Esmaili-Sari, A., Riyahi-Bakhtiari, A., Hadipour, M.: Soil contamination of metals in the three industrial estates, Arak, Iran. Bull. Environ. Contamination Toxicol. 88, 634–638 (2012)

    Article  Google Scholar 

  184. Sulaiman, M., Salawu, K., Barambu, A.: Assessment of concentrations and ecological risk of heavy metals at resident and remediated soils of uncontrolled mining site at Dareta Village, Zamfara, Nigeria. J. Appl. Sci. Environ. Manag. 23, 187–193 (2019)

    Google Scholar 

  185. Liu, H., Probst, A., Liao, B.: Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 339, 153–166 (2005)

    Article  Google Scholar 

  186. Fryer, M., Collins, C.D., Ferrier, H., Colvile, R.N., Nieuwenhuijsen, M.J.: Human exposure modelling for chemical risk assessment: a review of current approaches and research and policy implications. Environ. Sci. Policy 9, 261–274 (2006)

    Article  Google Scholar 

  187. Acosta, J., Faz, A., Martínez-Martínez, S., Zornoza, R., Carmona, D., Kabas, S.: Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. J. Geochem. Explor. 109, 8–17 (2011)

    Article  Google Scholar 

  188. Fernández-Caliani, J., Barba-Brioso, C., González, I., Galán, E.: Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut. 200, 211–226 (2009)

    Article  Google Scholar 

  189. Alloway, B.J.: Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability. Springer, Heidelberg (2012)

    Google Scholar 

  190. Silveira, M.L.A., Alleoni, L.R.F., Guilherme, L.R.G.: Biosolids and heavy metals in soils. Scientia Agricola 60, 793–806 (2003)

    Article  Google Scholar 

  191. Clemente, R., Walker, D.J., Bernal, M.P.: Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): the effect of soil amendments. Environ. Pollut. 138, 46–58 (2005)

    Article  Google Scholar 

  192. Jung, M.C.: Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Sensors 8, 2413–2423 (2008)

    Article  Google Scholar 

  193. Amusan, A., Ige, D., Olawale, R.: Characteristics of soils and crops’ uptake of metals in municipal waste dump sites in Nigeria. J. Hum. Ecol. 17, 167–171 (2005)

    Article  Google Scholar 

  194. Raj, K., Kardam, A., Arora, J., Srivastava, S.: Artificial Neural Network (ANN) design for Hg–Se interactions and their effect on reduction of Hg uptake by radish plant. J. Radioanal. Nucl. Chem. 283, 797–801 (2010)

    Article  Google Scholar 

  195. Ghosh, A., Sinha, K.: Optimization of Reduction of Copper Using Stenotrophomonas maltophilia PD2 Biomass and Artificial Neural Network Modeling. Environ. Eng. Manag. J. (EEMJ) 14 (2015)

    Google Scholar 

  196. Roohi, R., Jafari, M., Jahantab, E., Aman, M.S., Moameri, M., Zare, S.: Application of artificial neural network model for the identification the effect of municipal waste compost and biochar on phytoremediation of contaminated soils. J. Geochem. Explor. 208, 106399 (2020)

    Article  Google Scholar 

  197. Zhou, P., Zhao, Y., Zhao, Z., Chai, T.: Source mapping and determining of soil contamination by heavy metals using statistical analysis, artificial neural network, and adaptive genetic algorithm. J. Environ. Chem. Eng. 3, 2569–2579 (2015)

    Article  Google Scholar 

  198. Bazoobandi, A., Emamgholizadeh, S., Ghorbani, H.: Estimating the amount of cadmium and lead in the polluted soil using artificial intelligence models. Eur. J. Environ. Civil Eng. 1–19 (2019)

    Google Scholar 

  199. Wang, Z., Yin, Z., Caers, J., Zuo, R.: A Monte Carlo-based framework for risk-return analysis in mineral prospectivity mapping. Geosci. Front. (2020)

    Google Scholar 

  200. Panahi, M., Sadhasivam, N., Pourghasemi, H.R., Rezaie, F., Lee, S.: Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR). J. Hydrol. 125033 (2020)

    Google Scholar 

  201. Porwal, A., Carranza, E., Hale, M.: Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Nat. Resour. Res. 12, 1–25 (2003)

    Article  Google Scholar 

  202. Porwal, A., Carranza, E., Hale, M.: Artificial neural networks for mineral-potential mapping: a case study from Aravalli Province Western India. Nat. Resources Res. 12, 155–171 (2003)

    Article  Google Scholar 

  203. Saljoughi, B.S., Hezarkhani, A.: A comparative analysis of artificial neural network (ANN), wavelet neural network (WNN), and support vector machine (SVM) data-driven models to mineral potential mapping for copper mineralizations in the Shahr-e-Babak region, Kerman, Iran. Appl. Geomatics 10, 229–256 (2018)

    Article  Google Scholar 

  204. Chen, Y., Wu, W.: Mapping mineral prospectivity using an extreme learning machine regression. Ore Geol. Rev. 80, 200–213 (2017)

    Article  Google Scholar 

  205. Naghibi, S.A., Pourghasemi, H.R., Dixon, B.: GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 188(1), 1–27 (2015). https://doi.org/10.1007/s10661-015-5049-6

    Article  Google Scholar 

  206. Naghibi, S.A., Ahmadi, K., Daneshi, A.: Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour. Manag. 31, 2761–2775 (2017)

    Article  Google Scholar 

  207. Nhu, V.-H., Rahmati, O., Falah, F., Shojaei, S., Al-Ansari, N., Shahabi, H., Shirzadi, A., Górski, K., Nguyen, H., Ahmad, B.B.: Mapping of groundwater spring potential in karst aquifer system using novel ensemble bivariate and multivariate models. Water 12, 985 (2020)

    Article  Google Scholar 

  208. Singh, V., Singh, D., Singh, T.: Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int. J. Rock Mech. Min. Sci. 38, 269–284 (2001)

    Article  Google Scholar 

  209. Kaunda, R.: New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength. J. Rock Mech. Geotech. Eng. 6, 338–347 (2014)

    Article  Google Scholar 

  210. Fathipour-Azar, H., Wang, J., Jalali, S.-M.E., Torabi, S.R.: Numerical modeling of geomaterial fracture using a cohesive crack model in grain-based DEM. Comput. Particle Mech. 7(4), 645–654 (2019). https://doi.org/10.1007/s40571-019-00295-4

    Article  Google Scholar 

  211. Nguyen, H., Bui, X.-N.: Soft computing models for predicting blast-induced air over-pressure: a novel artificial intelligence approach. Appl. Soft Comput. 92, 106292 (2020)

    Article  Google Scholar 

  212. Duan, J., Asteris, P.G., Nguyen, H., Bui, X.-N., Moayedi, H.: A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. Eng. Comput. 4, 1–18 (2020)

    Google Scholar 

  213. Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H., Abdullahi, M.A.M.: Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping. Geomatics Nat. Hazards Risk 10, 1667–1693 (2019)

    Google Scholar 

  214. Nguyen, H., Moayedi, H., Foong, L.K., Al Najjar, H.A.H., Jusoh, W.A.W., Rashid, A.S.A., Jamali, J.: Optimizing ANN models with PSO for predicting short building seismic response. Eng. Comput. 36(3), 823–837 (2019). https://doi.org/10.1007/s00366-019-00733-0

    Article  Google Scholar 

  215. Borella, J., Quigley, M., Krauss, Z., Lincoln, K., Attanayake, J., Stamp, L., Lanman, H., Levine, S., Hampton, S., Gravley, D.: Geologic and geomorphic controls on rockfall hazard: how well do past rockfalls predict future distributions? Nat. Hazards Earth Syst. Sci. 19, 2249–2280 (2019)

    Article  Google Scholar 

  216. Lamghari, A., Dimitrakopoulos, R.: Hyper-heuristic approaches for strategic mine planning under uncertainty. Comput. Oper. Res. 115, 104590 (2020)

    Article  Google Scholar 

  217. Ahmadi, M.R., Shahabi, R.S.: Cutoff grade optimization in open pit mines using genetic algorithm. Resourc. Policy 55, 184–191 (2018)

    Article  Google Scholar 

  218. He, Y., Gao, S., Liao, N., Liu, H.: A nonlinear goal-programming-based DE and ANN approach to grade optimization in iron mining. Neural Comput. Appl. 27(7), 2065–2081 (2015). https://doi.org/10.1007/s00521-015-2006-9

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Center for Mining, Electro-Mechanical research of Hanoi University of Mining and Geology (HUMG), Hanoi, Vietnam, and the research team of Innovations for Sustainable and Responsible Mining (ISRM) of HUMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan-Nam Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bui, XN., Bui, HB., Nguyen, H. (2021). A Review of Artificial Intelligence Applications in Mining and Geological Engineering. In: Bui, XN., Lee, C., Drebenstedt, C. (eds) Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining. Lecture Notes in Civil Engineering, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-60839-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60839-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60838-5

  • Online ISBN: 978-3-030-60839-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics