Skip to main content

Inference Method for Reconstructing Regulatory Networks Using Statistical Path-Consistency Algorithm and Mutual Information

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Abstract

The advances of high-throughout technologies have produced huge amount of data regarding gene expressions or protein activities under various experimental conditions. The reverse-engineering of regulatory networks using these datasets is one of the top important research topics in computational biology. Although substantial efforts have been contributed to design effective inference methods, there are still a number of significant challenges to deal with the weak correlations between the observation data and the dependence of network structure on the order of variables in the systems. To address these issues, this work proposes a novel statistical approach to infer the structure of regulatory networks. Instead of using one single variable order, we generate a number of variable orders and then obtain different networks based on these orders. The weight of each edge for connecting genes/proteins is determined by the statistical measures based on the generated networks using different variable orders. Our proposed algorithm is evaluated by using the golden standard networks in Dream challenges and a cell signalling transduction pathway by using experimental data. Inference results suggest that our proposed algorithm is an effective approach for the reverse-engineering of regulatory networks with better accuracy.

This work is supported by the National Natural Science Foundation of China (Grant number: 11931019, 11871238), and the Science Foundation of Wuhan Institute of Technology (Grant number K202047).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saintantoine, M.M., Singh, A.: Network inference in systems biology: recent developments, challenges, and applications. Curr. Opin. Biotechnol. 63, 89–98 (2020)

    Article  Google Scholar 

  2. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks. Nat. Rev. Mol. Cell Biol. 9(10), 770–780 (2008)

    Article  Google Scholar 

  3. Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dallafavera, R., Califano, A.: Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37(4), 382–390 (2005)

    Article  Google Scholar 

  4. Li, H., Xie, L., Zhang, X., Wang, Y.: Wisdom of crowds for robust gene network inference. Nat. Meth. 9(8), 796–804 (2012)

    Article  Google Scholar 

  5. Marbach, D., Prill, R.J., Schaffter, T., Mattiussi, C., Floreano, D., Stolovitzky, G.: Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl. Acad. Sci. 107(14), 6286–6291 (2010)

    Article  Google Scholar 

  6. Huynh-Thu, V.A., Sanguinetti, G.: Gene regulatory network inference: an introductory survey. In: Sanguinetti, G., Huynh-Thu, V.A. (eds.) Gene Regulatory Networks. MMB, vol. 1883, pp. 1–23. Springer, New York (2019). https://doi.org/10.1007/978-1-4939-8882-2_1

    Chapter  MATH  Google Scholar 

  7. Omranian, N., Eloundoumbeb Stuart, J.M., Segal, E., Koller, D., Kim, S.M.: A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643), 249–255 (2003)

    Article  Google Scholar 

  8. Farahmand, S., Oconnor, C., Macoska, J., Zarringhalam, K.: Causal inference engine: a platform for directional gene set enrichment analysis and inference of active transcriptional regulators. Nucleic Acids Res. 47(22), 698852 (2019)

    Google Scholar 

  9. Omranian, N., Eloundou-Mbebi, J.M., Mueller-Roeber, B., Nikoloski, Z.: Gene regulatory network inference using fused LASSO on multiple data sets. Sci. Rep. 6(1), 20533 (2016)

    Article  Google Scholar 

  10. Casadiego, J., Nitzan, M., Hallerberg, S., Timme, M.: Model-free inference of direct network interactions from nonlinear collective dynamics. Nat. Commun. 8(1), 2192 (2017)

    Article  Google Scholar 

  11. Liu, Z.: Quantifying gene regulatory relationships with association measures: a comparative study. Front. Genet. 8, 96 (2017)

    Article  Google Scholar 

  12. Li, H., Xie, L., Zhang, X., Wang, Y.: Output regulation of Boolean control networks. IEEE Trans. Autom. Control 62(6), 2993–2998 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cantone, I., et al.: A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1), 172–181 (2009)

    Article  Google Scholar 

  14. Chan, T.E., Stumpf, M.P.H., Babtie, A.C.: Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 5(3), 251 (2017)

    Article  Google Scholar 

  15. Barman, S., Kwon, Y.K.: A Boolean network inference from time-series gene expression data using a genetic algorithm. Bioinformatics 34(17), i927–i933 (2018)

    Article  Google Scholar 

  16. Kishan, K.C., Li, R., Cui, F., Haake, A.R.: GNE: a deep learning framework for gene network inference by aggregating biological information. BMC Syst. Biol. 13(2), 1–14 (2019)

    Google Scholar 

  17. Yuan, L., et al.: Integration of multi-omics data for gene regulatory network inference and application to breast cancer. IEEE/ACM Trans. Comput. Biol. Bioinf. 16(3), 782–791 (2019)

    Article  Google Scholar 

  18. Wang, J., Wu, Q., Hu, X.T., Tian, T.: An integrated platform for reverse-engineering protein-gene interaction network. Methods 110, 3–13 (2016)

    Article  Google Scholar 

  19. Wei, J., Hu, X., Zou, X., Tian, T.: Reverse-engineering of gene networks for regulating early blood development from single-cell measurements. BMC Med. Genomics 10(5), 72 (2017)

    Article  Google Scholar 

  20. Yang, B., Bao, W.: RNDEtree: regulatory network with differential equation based on flexible neural tree with novel criterion function. IEEE Access 7, 58255–58263 (2019)

    Article  Google Scholar 

  21. Yang, B., Bao, W., Huang, D.-S., Chen, Y.: Inference of large-scale time-delayed gene regulatory network with parallel mapreduce cloud platform. Sci. Rep. 8(1), 17787 (2018)

    Article  Google Scholar 

  22. Meyer, P.E., Kontos, K., Lafitte, F., Bontempi, G.: Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinf. Syst. Biol. 2007(1), 8 (2007)

    Google Scholar 

  23. Guo, X., Zhang, H., Tian, T.: Development of stock correlation networks using mutual information and financial big data. PLoS ONE 13(4), e0195941 (2018)

    Article  Google Scholar 

  24. Zhang, X., et al.: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics 28(1), 98–104 (2012)

    Article  Google Scholar 

  25. Zhang, X., Zhao, J., Hao, J., Zhao, X., Chen, L.: Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks. Nuc Aci Res. 43(5), e31 (2015)

    Article  Google Scholar 

  26. Zhao, J., Zhou, Y., Zhang, X., Chen, L.: Part mutual information for quantifying direct associations in networks. Proc. Natl. Acad. Sci. 113(18), 5130–5135 (2016)

    Article  Google Scholar 

  27. Colombo, D., Maathuis, M.H.: Order-independent constraint-based causal structure learning. J. Mach. Learn. Res. 15(1), 3741–3782 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Schölko pf, B.: Quantifying causal influences. Ann. Stat. 41(5), 2324–2358 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. 99(16), 10555–10560 (2002)

    Article  Google Scholar 

  30. Spirtes, P., Glymour, C., Scheines, R.: The MIT Press (1993)

    Google Scholar 

  31. Cargnello, M., Roux, P.P.: Activation and function of the mapks and their substrates the mapk-activated protein kinases. Microbiol. Mol. Biol. Rev. 75(1), 50–83 (2011)

    Article  Google Scholar 

  32. Kalisch, M., Maechler, M., Colombo, D.: Causal inference using graphical models with the r package pcalg. J. Stat. Softw. 047(1), 1–26 (2012)

    Google Scholar 

  33. Spirtes, P.: Causation, prediction, and search, 45(3), 272–273 (1996)

    Google Scholar 

  34. Tian, T., Song, J.: Mathematical modelling of the MAP kinase pathway based on proteomics dataset. PLoS ONE 7(8), e42230 (2012)

    Article  Google Scholar 

  35. Greenfield, A., Madar, A., Ostrer, H., Bonneau, R.: DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models. PLoS ONE 5(10), e13397 (2014)

    Article  Google Scholar 

  36. Lawrence, R.T., Perez, E.M., Hernandez, D., et al.: The proteomic landscape of triple-negative breast cancer. Cell Rep. 11(4), 630–644 (2015)

    Article  Google Scholar 

  37. Zhang, W., Liu, H.T.: Mapk signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12(1), 9 (2002)

    Article  MathSciNet  Google Scholar 

  38. Kanehisa, M., Goto, S., Kawashima, S., et al.: The KEGG resource for deciphering the genome. Nucleic Acids Res. 32(suppl 1), D277–D280 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhai Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yan, Y., Zhang, X., Tian, T. (2020). Inference Method for Reconstructing Regulatory Networks Using Statistical Path-Consistency Algorithm and Mutual Information. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics