Skip to main content

Carotid Artery Evaluation

  • Chapter
  • First Online:
Imaging in Nephrology

Abstract

Cerebrovascular disease is a significant cause of disability and mortality in the developed countries. Stroke is generally ischemic, secondary to emboli migration, often from a vulnerable plaque at the carotid bifurcation.

Early detection and treatment of carotid artery disease are therefore crucial and noninvasive imaging modalities may provide comprehensive anatomical information to aid in planning therapeutic strategies. In the last decades many imaging modalities have been developed, allowing not only to measure the degree of stenosis, but also to evaluate the presence of intraplaque hemorrhage or a lipid-rich core, the degree of inflammation, and its effect on the carotid flow. The advancements in carotid imaging permit to risk stratify patients and to obtain several information about their possible outcome.

In this chapter, we provide an overview of the carotid imaging techniques and describe the actual applications of different imaging modalities to detect carotid pathologies, revealing their limitations and advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastasi G, Capitani S, Carnazza ML, et al. Trattato di Anatomia Umana. Volume Primo – Edi.Ermes. 2010:341–57.

    Google Scholar 

  2. Saba L, Raz E. Neurovascular imaging: from basics to advanced concepts. Springer Ref. 2016:87–92.

    Google Scholar 

  3. Michalinos A, Chatzimarkos M, et al. Anatomical considerations on surgical anatomy of the carotid bifurcation. Anatomy Research International. 2016;2016:1.

    Article  Google Scholar 

  4. Schulz UGR, Rothwell PM. Major variation in carotid bifurcation anatomy: a possible risk factor for plaque development? Stroke. 2001;32(11):2522–9.

    Article  CAS  Google Scholar 

  5. Bouthillier A, Van Loveren HR, Keller JT. Segments of the internal carotid artery: A new classification. Neurosurgery. 1996;38(3):425–33.

    CAS  PubMed  Google Scholar 

  6. Lasjaunias P, Santoyo-Vazquez A. Segmental agenesis of the internal carotid artery: angiographic:133–41.

    Google Scholar 

  7. Dungan DH, Heiserman JE. The carotid artery: embryology. Normal Anat Physiol. 1996:1052–51.49.

    Google Scholar 

  8. Newton TH, Potts DG. Radiology of the skull and brain. CV Mosby: St Louis; 1974.

    Google Scholar 

  9. Huber P. Cerebral angiography, ed 2: Thieme Medical Publishers; 1982.

    Google Scholar 

  10. Vitek JJ, Reaves P. Thoracic bifurcation of the common carotid artery. Neuroradiology. 1973;5:133–9.

    Article  CAS  Google Scholar 

  11. Lie TA. Congenital anomalies of the carotid arteries: an angiographic study and a review of the literature. Amsterdam: Excerpta Medica; 1968.

    Google Scholar 

  12. O’Leary DH, Polak JF, Kronmal RA, et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study. N Engl J Med. 1999;340:14–22.

    Article  Google Scholar 

  13. Rafailidis V, Charitanti A, Tegos T, et al. Contrast-enhanced ultrasound of the carotid system: a review of the current literature. J Ultrasound. 2017;20:97–109.

    Article  Google Scholar 

  14. Feinstein SB. Contrast ultrasound imaging of the carotid artery vasa vasorum and atherosclerotic plaque neovascularization. J Am Coll Cardiol. 2006;48:236–43.

    Article  Google Scholar 

  15. Rafailidis V, Sidhu PS. Vascular ultrasound, the potential of integration of multiparametric ultrasound into routine clinical practice. Ultrasound. 2018;26:136–44.

    Article  Google Scholar 

  16. Goddi A, Bortolotto C, Fiorina I, et al. High-frame rate vector flow imaging of the carotid bifurcation. Insights Imaging. 2017;8:319.

    Article  Google Scholar 

  17. Hansen KL, Udesen J, Gran F, Jensen JA, Bachmann NM. In-vivo examples of flow patterns with the fast vector velocity ultrasound method. Ultraschall Med. 2009;30:471–7.

    Article  CAS  Google Scholar 

  18. Meyer P, Pelz JO. Blood flow reversal from the external into the internal carotid artery-New insights into the hemodynamics at the carotid bifurcation. Brain Behav. 2018;8(11)

    Google Scholar 

  19. Goddi A, Fanizza M, Bortolotto C, et al. Vector flow imaging techniques: a new way to study vessel flow with ultrasound. J Clin Ultrasound. 2017;45:582–8.

    Article  Google Scholar 

  20. Qiu Y, Yang D, Zhang Q et al. V Flow technology in measurement of wall shear stress of common carotid arteries in healthy adults: Feasibility and normal values. Clin Hemorheol Microcirc 2019

    Google Scholar 

  21. ACR-ASNR-SPR Practice Parameter for the Performance and Interpretation of Cervico-cerebral Computed Tomography Angiography (CTA) Res.19–2015.

    Google Scholar 

  22. Varga A, Di Leo G, et al. Multidetector CT angiography of the circle of Willis: association of its variants with carotid artery disease and brain ischemia. Eur Radiol. 2019;29:46–56. https://doi.org/10.1007/s00330-018-5577-x.

    Article  PubMed  Google Scholar 

  23. Jaff MR, Goldmakher GV, et al. Imaging of the carotid arteries: the role of duplex ultrasonography, magnetic resonance arteriography, and computerized tomographic arteriography. Vascular Medicine. 2008;13(4):281–92. https://doi.org/10.1177/1358863X08091971.

    Article  PubMed  Google Scholar 

  24. Aboyans V, Ricco JB, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Heart Journal. 2018;39(9):763–816. https://doi.org/10.1093/eurheartj/ehx095.

    Article  Google Scholar 

  25. Lell MM, Anders K, et al. New Techniques in CT Angiography. Radiographics. 2006;26(Suppl 1):S45–62.

    Article  Google Scholar 

  26. Morelli JN, et al. Technical considerations in MR angiography: an image-based guide. J Magn Reson Imaging. 2013;37(6):1326–41. https://doi.org/10.1002/jmri.24174.

    Article  PubMed  Google Scholar 

  27. Yucel EK, et al. Magnetic resonance angiography. Circulation. 1999;100(22):2284–301. https://doi.org/10.1161/01.CIR.100.22.2284.

    Article  CAS  PubMed  Google Scholar 

  28. Boujan T, et al. Value of contrast-enhanced MRA versus time-of-flight MRA in acute ischemic stroke MRI. AJNR. 2018;39(9):1710–6. https://doi.org/10.3174/ajnr.A5771.

    Article  CAS  PubMed  Google Scholar 

  29. Binek A, et al. Detection and grading of DAVF: prospects and limitations of 3T MRI. Eur Radiol. 2012;22(2):429–38. https://doi.org/10.1007/s00330-011-2268-2.

    Article  Google Scholar 

  30. Mathiesen EB, Bønaa KH, et al. Echolucent plaques are associated with high risk of ischemic cerebrovascular events in carotid stenosis: the tromsø study. Circulation. 2001;103(17):2171–5.

    Article  CAS  Google Scholar 

  31. Grønholdt ML, Nordestgaard BG, et al. Ultrasonic echolucent carotid plaques predict future stroke. Circulation. 2001;104(1):68–73.

    Article  Google Scholar 

  32. Gupta A, Kesavabhotla K, et al. Plaque echolucency and stroke risk in asymptomatic carotid stenosis: a systematic review and meta-analysis. Stroke. 2015;46(1):91–7.

    Article  Google Scholar 

  33. Barnett HJM, Taylor DW, Eliasziw M, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. 1998;339(20):1415–25.

    Article  CAS  Google Scholar 

  34. European Carotid Surgery Trialists’ Collaborative Group. Randomized trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet. 1998;351(9113):1379–87.

    Article  Google Scholar 

  35. Brott TG, Halperin JL, Abbara S, et al. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/ SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease. J Am Coll Cardiol. 2011;57(8):1002–44.

    Article  Google Scholar 

  36. Grant EG, Benson CB, Moneta GL, et al. Carotid artery stenosis: gray-scale and Doppler US diagnosis–Society of Radiologists in Ultrasound Consensus Conference. Radiology. 2003;229(2):340–6.

    Article  Google Scholar 

  37. Ricotta JJ, AbuRahma A, et al. Updated Society for Vascular Surgery guidelines for management of extracranial carotid disease. J Vasc Surg. 2011;54:e1.

    Article  Google Scholar 

  38. Adla T, Adlova R. Multimodality imaging of carotid stenosis. Int J Angiol. 2015;24:179–84.

    Article  Google Scholar 

  39. Tholen A, De Monye C, et al. Suspected carotid artery stenosis: cost-effectiveness of CT angiography in work-up of patients with recent TIA or minor ischemic stroke. Radiology. 2010;256(2):585–97. https://doi.org/10.1148/radiol.10091157.

    Article  PubMed  Google Scholar 

  40. Bartlett ES, Walters TD, et al. Quantification of carotid stenosis on CT angiography. Am J Neuroradiol. 2006;27:13–9.

    CAS  PubMed  Google Scholar 

  41. Saba L, Mallarini G. Window setting for the study of calcified carotid plaques with multidetector CT angiography. AJNR Am J Neuroradiol. 2009;30:1445–50.

    Article  CAS  Google Scholar 

  42. Samarzija K, Milosevic P, et al. Grading of carotid artery stenosis with computed tomography angiography: whether to use the narrowest diameter or the cross-sectional area. Insight into Imaging. 2018;9:527–34.

    Article  Google Scholar 

  43. U-King-Im JM, Trivedi RA, et al. Measuring carotid stenosis on contrast-enhanced magnetic resonance angiography. Diagnostic performance and reproducibility of 3 different methods. Stroke. 2004;35(9):2083–8.

    Article  Google Scholar 

  44. Anzidei M, et al. Diagnostic accuracy of colour Doppler ultrasonography, CT angiography and blood-pool-enhanced MR angiography in assessing carotid stenosis: A comparative study with DSA in 170 patients. Radiol Med. 2012;117(1):54–71. https://doi.org/10.1007/s11547-011-0651-3.

    Article  CAS  PubMed  Google Scholar 

  45. Frölich AMJ, et al. Comparing different MR angiography strategies of carotid stents in a vascular flow model: toward stent-specific recommendations in MR follow-up. Neuroradiology. 2011;53(5):359–65. https://doi.org/10.1007/s00234-010-0753-y.

    Article  PubMed  Google Scholar 

  46. Debrey SM, et al. Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease. Stroke. 2008;39(8):2237–48. https://doi.org/10.1161/STROKEAHA.107.509877.

    Article  PubMed  Google Scholar 

  47. Platzek I, et al. Carotid artery stenosis: comparison of 3D time-of-flight MR angiography and contrast-enhanced MR angiography at 3T. Radiol Res Pract. 2014;2014:508–715. https://doi.org/10.1155/2014/508715.

    Article  Google Scholar 

  48. Tomandl BF, Hammen T. Bone-subtraction CT angiography for the evaluation of intracranial aneurysms. AJNR Am J Neuroradiol. 2006;27:55–9.

    CAS  PubMed  Google Scholar 

  49. Gaughen JR, Raghavan P, Jensen ME, et al. Utility of CT angiography in the identification and characterization of supraclinoid internal carotid artery blister aneurysms. AJNR Am J Neuroradiol. 2010;31(4):640–4. https://doi.org/10.3174/ajnr.A1893.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Deutschmann HA, et al. Diagnostic accuracy of 3D time-of-flight MR angiography compared with digital subtraction angiography for follow-up of coiled intracranial aneurysms: influence of aneurysm size. Am J Neuroradiol. 2007;28(4):628–34. http://www.ajnr.org/content/28/4/628.

  51. Rodallec MH, Marteau V, et al. Craniocervical arterial dissection: Spectrum of imaging findings and differential diagnosis. Radiographics. 2008;28:1711–28.

    Article  Google Scholar 

  52. Leclerc X, Godefroy O, Salhi A, Lucas C, Leys D, Pruvo JP. Helical CT for the diagnosis of extracranial internal carotid artery dissection. Stroke. 1996;27(3):461–6.

    Article  CAS  Google Scholar 

  53. Mehdi E, et al. Craniocervical dissections: radiologic findings, pitfalls, mimicking diseases: A pictorial review. Curr Med Imag Reviews. 2018;14(2):207–22. https://doi.org/10.2174/1573405613666170403102235.

    Article  Google Scholar 

  54. Schneider G, et al. Magnetic resonance angiography: Springer-Verlag; 2005. https://doi.org/10.1007/b138651.

  55. Mukhtyar C, Guillevin L, et al. EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2009;68(3):318–23.

    Article  CAS  Google Scholar 

  56. Schmidt WA. Role of ultrasound in the understanding and management of vasculitis. Ther Adv Musculoskel Dis. 2014;6(2):39–47.

    Article  Google Scholar 

  57. Germano G, Macchioni P, et al. Contrast-enhanced ultrasound of the carotid artery in patients with large vessel vasculitis: correlation with positron emission tomography findings. Arthritis Care Res. 2017;69(1):143–9.

    Article  Google Scholar 

  58. Razek AAKA, Alvarez H, Bagg S, et al. Imaging spectrum of CNS vasculitis. Radiographics. 2014;34(4):873–94.

    Article  Google Scholar 

  59. Hur JH, Chun EJ, et al. CT features of vasculitides based on the 2012 International Chapel Hill Consensus Conference Revised Classification. Korean J Radiol. 2017;18(5):786–98.

    Article  Google Scholar 

  60. Broncano J, Vargas D, et al. CT and MR imaging of cardio-thoracic vasculitis. Radiographics. 2018;38(4):997–1021. https://doi.org/10.1148/rg.2018170136.

    Article  PubMed  Google Scholar 

  61. Pipitone N, Versari A, Salvarani C. Role of imaging studies in the diagnosis and follow-up of large-vessel vasculitis: an update. Rheumatology (Oxford). 2008;47(4):403–8.

    Article  CAS  Google Scholar 

  62. Saam T, et al. High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br J Radiol. 2010;83(993):e182–4. https://doi.org/10.1259/bjr/74101656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Adler S, et al. Diagnostic value of contrast-enhanced magnetic resonance angiography in large-vessel vasculitis. Swiss Med Wkly. 2017;147:0708. https://doi.org/10.4414/smw.2017.14397.

    Article  CAS  Google Scholar 

  64. Arning C, Grzyska U. Color Doppler imaging of cervicocephalic fibromuscular dysplasia. Cardiovasc Ultrasound. 2004;2:7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fiorina, I. et al. (2021). Carotid Artery Evaluation. In: Granata, A., Bertolotto, M. (eds) Imaging in Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-60794-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60794-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60792-0

  • Online ISBN: 978-3-030-60794-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics