Skip to main content

How Can the Appropriate Objective and Predictive Probabilities Get into Non-collapse Quantum Mechanics?

  • Chapter
  • First Online:
In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius

Part of the book series: Progress in Probability ((PRPR,volume 77))

Abstract

It is proved that in non-collapse quantum mechanics the state of a closed system can always be expressed as a superposition of states all of which describe histories that conform to Born’s probability rule. This theorem allows one to see Born probabilities in non-collapse quantum mechanics as an appropriate predictive tool, implied by the theory, provided an appropriate version of the superposition principle is included in its axioms

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguirre, A., Tegmark, M.: Born in an infinite universe: a cosmological interpretation of quantum mechanics. Phys. Rev. D 84, 105002 (2011)

    Article  Google Scholar 

  2. Albert, D.: Quantum Mechanics and Experience. Harvard University Press, Cambridge (1992)

    Google Scholar 

  3. Barrett, J.: The Quantum Mechanics of Minds and Worlds. Oxford University Press, Oxford (1999)

    Google Scholar 

  4. Bricmont, J.: Making Sense of Quantum Mechanics Springer, Berlin (2016)

    Google Scholar 

  5. Bruce, C.: Schrödinger Rabbits. The Many Worlds of the Quantum. Joseph Henry Press, Washington (2004)

    Google Scholar 

  6. Carroll, S.: Something Deeply Hidden. Dutton (2019)

    Google Scholar 

  7. Deutsch, D.: Quantum theory of probability and decisions. Proc. R. Soc. A 455, 3129–3137 (1999)

    Article  MathSciNet  Google Scholar 

  8. De Witt, B., Grahan, N. (eds.): The Many Worlds Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1973)

    Google Scholar 

  9. Everett, H.: “Relative state” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957)

    Article  MathSciNet  Google Scholar 

  10. Folland, G.B.: Real Analysis. Modern Techniques and Their Application. Wiley, London (1984)

    Google Scholar 

  11. Hall, B.C.: Quantum Theory for Mathematicians. Springer, Berlin (2013)

    Book  Google Scholar 

  12. Maudlin, T.: Philosophy of Physics. Quantum Theory. Princeton University Press, Princeton (2019)

    Book  Google Scholar 

  13. McQueen, K.J., Vaidman, L.: In defense of the self-location uncertainty account of probability in the many-worlds interpretation. Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. Mod. Phys. 66, 14–23 (2019)

    MATH  Google Scholar 

  14. Reed, M., Simon, B.: Functional Analysis. Revised and Enlarged Edition. Academic Press, New York (1980)

    MATH  Google Scholar 

  15. Royden, H.L.: Real Analysis, 3rd edn. Macmillan Publishing Company, New York (1986)

    MATH  Google Scholar 

  16. Saunders, S., Barrett, J., Kent, A., Wallace, D. (eds.): Many Worlds? Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  17. Schonmann, R.H.: A theorem and a remark with the purpose of comparing the role and origin of probabilities in non-collapse and in collapse quantum mechanics (2019). Preprint

    Google Scholar 

  18. Sebens, T., Carroll, S.M.: Self-locating uncertainty and the origin of probability in Everettian quantum mechanics. Br. J. Philos. Sci. 69(1), 25–74 (2018)

    Article  MathSciNet  Google Scholar 

  19. Tegmark, M.: Many lives in many worlds. Nature 448(5), 23–24 (2007)

    Article  Google Scholar 

  20. Tegmark, M.: Our Mathematical Universe. My Quest for the Ultimate Nature of Reality. Doubleday, New York (2014)

    Google Scholar 

  21. Wallace, D.: The Emergent Multiverse: Quantum Theory According to the Everett Interpretation. Oxford University Press, Oxford (2012)

    Book  Google Scholar 

Download references

Acknowledgements

I am grateful to Marek Biskup, Michael Gutperle, Ander Holroyd, Jim Ralston, Pierrre-François Rodriguez and Sheldon Smith for enlightening discussions. Special thanks go to Jim Ralston and Maria Eulalia Vares for their careful reading of the proof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto H. Schonmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schonmann, R.H. (2021). How Can the Appropriate Objective and Predictive Probabilities Get into Non-collapse Quantum Mechanics?. In: Vares, M.E., Fernández, R., Fontes, L.R., Newman, C.M. (eds) In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius. Progress in Probability, vol 77. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-60754-8_30

Download citation

Publish with us

Policies and ethics