Skip to main content

Exponential Decay in the Loop O(n) Model on the Hexagonal Lattice for n > 1 and \(x<\tfrac {1}{\sqrt {3}}+\varepsilon (n)\)

  • Chapter
  • First Online:
In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius

Part of the book series: Progress in Probability ((PRPR,volume 77))

Abstract

We show that the loop O(n) model on the hexagonal lattice exhibits exponential decay of loop sizes whenever n > 1 and \(x<\tfrac {1}{\sqrt {3}}+\varepsilon (n)\), for some suitable choice of ε(n) > 0.

It is expected that, for n ≤ 2, the model exhibits a phase transition in terms of x, that separates regimes of polynomial and exponential decay of loop sizes. In this paradigm, our result implies that the phase transition for n ∈ (1, 2] occurs at some critical parameter x c(n) strictly greater than that \(x_c(1) = 1/\sqrt {3}\). The value of the latter is known since the loop O(1) model on the hexagonal lattice represents the contours of the spin-clusters of the Ising model on the triangular lattice.

The proof is based on developing n as 1 + (n − 1) and exploiting the fact that, when \(x<\tfrac {1}{\sqrt {3}}\), the Ising model exhibits exponential decay on any (possibly non simply-connected) domain. The latter follows from the positive association of the FK-Ising representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This domination is of special interest as and for \(x \geq 1/\sqrt {3}\). Then we may simplify the value of β as \(\beta = \frac {(2+2\sqrt {3})^6}{ (n-1)^{2} + (2+2\sqrt {3})^6} \sim 1 - \tfrac 1{(2+2\sqrt {3})^{6}} (n-1)^{2}~\).

  2. 2.

    As and \(x \geq 1/\sqrt {3}\), we may assume that \(\alpha \sim 1 - \tfrac {1}{6\, (2+2\sqrt {3})^{6}} (n-1)^{2}\).

References

  1. Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models is sharp. J. Statist. Phys. 47(3–4), 343–374 (1987)

    Article  MathSciNet  Google Scholar 

  2. Beffara, V., Duminil-Copin, H.: The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1. Probab. Theory Related Fields 153(3–4), 511–542 (2012)

    Article  MathSciNet  Google Scholar 

  3. Benoist, S., Hongler, C.: The scaling limit of critical Ising interfaces is CLE3. Ann. Probab. 47(4), 2049–2086 (2019)

    Article  MathSciNet  Google Scholar 

  4. Blöte, H.W., Nienhuis, B.: The phase diagram of the O(n) model. Phys. A Stat. Mech. Appl. 160(2), 121–134 (1989)

    Article  Google Scholar 

  5. Camia, F., Newman, C.M.: Two-dimensional critical percolation: the full scaling limit. Commun. Math. Phys. 268(1), 1–38 (2006)

    Article  MathSciNet  Google Scholar 

  6. Chayes, L., Machta, J.: Graphical representations and cluster algorithms II. Phys. A Stat. Mech. Appl. 254(3), 477–516 (1998)

    Article  Google Scholar 

  7. Chayes, L., Pryadko, L.P., Shtengel, K.: Intersecting loop models on \(\mathbb Z^d\): rigorous results. Nucl. Phys. B 570(3), 590–614 (2000)

    Google Scholar 

  8. Chelkak, D., Smirnov, S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)

    Article  MathSciNet  Google Scholar 

  9. Crawford, N., Glazman, A., Harel, M., Peled, R.: Macroscopic loops in the loop O(n) model via the XOR trick. Preprint arXiv: 2001.11977 (2020)

    Google Scholar 

  10. Domany, E., Mukamel, D., Nienhuis, B., Schwimmer, A.: Duality relations and equivalences for models with O(n) and cubic symmetry. Nucl. Phys. B 190(2), 279–287 (1981)

    Article  Google Scholar 

  11. Duminil-Copin, H., Smirnov, S.: The connective constant of the honeycomb lattice equals \(\sqrt {2+\sqrt {2}}\). Ann. Math. (2) 175(3), 1653–1665 (2012)

    Google Scholar 

  12. Duminil-Copin, H., Glazman, A., Peled, R., Spinka, Y.: Macroscopic loops in the loop O(n) model at Nienhuis’ critical point. Preprint arXiv:1707.09335 (2017)

    Google Scholar 

  13. Duminil-Copin, H., Peled, R., Samotij, W., Spinka, Y.: Exponential decay of loop lengths in the loop O(n) model with large n. Commun. Math. Phys. 349(3), 777–817, 12 (2017)

    Google Scholar 

  14. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University, Cambridge (2017)

    Book  Google Scholar 

  15. Glazman, A., Manolescu, I.: Uniform Lipschitz Functions on the Triangular Lattice have Logarithmic Variations. Preprint arXiv:1810.05592 (2018)

    Google Scholar 

  16. Grimmett, G.: The random-cluster model. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 333. Springer, Berlin (2006)

    Google Scholar 

  17. Holley, R.: Remarks on the FKG inequalities. Comm. Math. Phys. 36, 227–231 (1974)

    Article  MathSciNet  Google Scholar 

  18. Kager, W., Nienhuis, B.: A guide to stochastic Löwner evolution and its applications. J. Statist. Phys. 115(5–6), 1149–1229 (2004)

    Article  MathSciNet  Google Scholar 

  19. Lenz, W.: Beitrag zum Verständnis der magnetischen Eigenschaften in festen Körpern. Phys. Zeitschr. 21, 613–615 (1920)

    Google Scholar 

  20. Nienhuis, B.: Exact critical point and critical exponents of O(n) models in two dimensions. Phys. Rev. Lett. 49(15), 1062–1065 (1982)

    Article  MathSciNet  Google Scholar 

  21. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. (2) 65, 117–149 (1944)

    Google Scholar 

  22. Peled, R., Spinka, Y.: Lectures on the spin and loop O(n) models. In: Sojourns in Probability Theory and Statistical Physics-I, pp. 246–320 (2019)

    Google Scholar 

  23. Smirnov, S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 239–244 (2001)

    Article  MathSciNet  Google Scholar 

  24. Smirnov, S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. (2) 172(2), 1435–1467 (2010)

    Google Scholar 

  25. Taggi, L.: Shifted critical threshold in the loop O(n) model at arbitrary small n. Electron. Commun. Probab. 23(96), 9 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ron Peled for suggesting to develop in n = (n − 1) + 1 following Chayes and Machta. Our discussions with Hugo Duminil-Copin, Yinon Spinka and Marcelo Hilario were also very helpful. We acknowledge the hospitality of IMPA (Rio de Janeiro), where this project started.

The first author is supported by the Swiss NSF grant P300P2_177848, and partially supported by the European Research Council starting grant 678520 (LocalOrder). The second author is a member of the NCCR SwissMAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Glazman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glazman, A., Manolescu, I. (2021). Exponential Decay in the Loop O(n) Model on the Hexagonal Lattice for n > 1 and \(x<\tfrac {1}{\sqrt {3}}+\varepsilon (n)\) . In: Vares, M.E., Fernández, R., Fontes, L.R., Newman, C.M. (eds) In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius. Progress in Probability, vol 77. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-60754-8_21

Download citation

Publish with us

Policies and ethics