Skip to main content

Osseointegrated Amputation Prostheses and Implanted Electrodes

  • Chapter
  • First Online:
Bionic Limb Reconstruction

Abstract

The load transfer from the external prosthesis to the residual limb via the socket can cause significant stress on the soft tissues, leading to irritation and skin ulcers. Osseointegrated bone-anchored prostheses systems create a direct structural and functional connection between the prosthesis and residual skeleton. Up to date, standardized implant systems, surgical techniques, and postoperative rehabilitation protocols have been developed for osseointegrated prostheses for the rehabilitation of amputees (OPRA), which has resulted in better functionality, fewer complications, and a better quality of life for implant recipients. The OPRA implant systems can now incorporate neuromuscular electrodes to facilitate myoelectric control and sensory feedback, which is especially important for upper extremity amputees. The latest development, called the osseointegrated human-machine gateway, allows for permanent implantation of neuromuscular electrodes, which provide long-term stable signals for myoelectric control, independent of limb position or environmental conditions, as well as artificial sensory feedback. In addition, the modular design of this system allows any part to be upgraded or replaced with minimal disturbance to the other components. The osseointegrated implants and the human-machine gateway represent frontiers in amputee rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamrad I, Soderberg B, Orneholm H, Hagberg K. SwedeAmp-the Swedish Amputation and Prosthetics Registry: 8-year data on 5762 patients with lower limb amputation show sex differences in amputation level and in patient-reported outcome. Acta Orthop. 2020;91:464–70. https://doi.org/10.1080/17453674.2020.1756101.

    Article  PubMed  Google Scholar 

  2. Ephraim PL, Dillingham TR, Sector M, Pezzin LE, Mackenzie EJ. Epidemiology of limb loss and congenital limb deficiency: a review of the literature. Arch Phys Med Rehabil. 2003;84:747–61. http://www.ncbi.nlm.nih.gov/pubmed/12736892. Accessed 12 Feb 2018.

    Article  Google Scholar 

  3. Sobaci G, Akýn T, Mutlu FM, Karagül S, Bayraktar MZ. Terror-related open-globe injuries: a 10-year review. Am J Ophthalmol. 2005;139:937–9. http://linkinghub.elsevier.com/retrieve/pii/S0002939404013728. Accessed 12 Feb 2018.

    Article  Google Scholar 

  4. Millstein S, Bain D, Hunter GA. A review of employment patterns of industrial amputees—factors influencing rehabilitation. Prosthetics Orthot Int. 1985;9:69–78. http://www.ncbi.nlm.nih.gov/pubmed/4047922. Accessed 12 Feb 2018.

    Article  CAS  Google Scholar 

  5. Reiber GE. Who is at risk of limb loss and what to do about it? J Rehabil Res Dev. 1994;31:357–62. http://www.ncbi.nlm.nih.gov/pubmed/7869284. Accessed 12 Feb 2018.

    CAS  PubMed  Google Scholar 

  6. Lundberg M, Hagberg K, Bullington J. My prosthesis as a part of me: a qualitative analysis of living with an osseointegrated prosthetic limb. Prosthetics Orthot Int. 2011;35:207–14. http://journals.sagepub.com/doi/10.1177/0309364611409795. Accessed 12 Feb 2018.

    Article  Google Scholar 

  7. Häggström E, Hagberg K, Rydevik B, Brånemark R. Vibrotactile evaluation: osseointegrated versus socket-suspended transfemoral prostheses. J Rehabil Res Dev. 2013;50:1423–34. http://www.rehab.research.va.gov/jour/2013/5010/pdf/JRRD-2012-08-0135.pdf. Accessed 12 Feb 2018.

    Article  Google Scholar 

  8. Rusaw D, Hagberg K, Nolan L, Ramstrand N. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss? J Rehabil Res Dev. 2012;49:1239–54. http://www.ncbi.nlm.nih.gov/pubmed/23341316. Accessed 12 Feb 2018.

    Article  Google Scholar 

  9. Hagberg K, Brånemark R, Gunterberg B, Rydevik B. Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up. Prosthetics Orthot Int. 2008;32:29–41. http://journals.sagepub.com/doi/10.1080/03093640701553922. Accessed 12 Feb 2018.

    Article  Google Scholar 

  10. Zaid MB, O’Donnell RJ, Potter BK, Forsberg JA. Orthopaedic osseointegration: state of the art. J Am Acad Orthop Surg. 2019;27(22):e977–85. https://doi.org/10.5435/JAAOS-D-19-00016.

    Article  PubMed  Google Scholar 

  11. Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1–132. http://www.ncbi.nlm.nih.gov/pubmed/356184. Accessed 12 Feb 2018.

    PubMed  Google Scholar 

  12. Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3:81–100. http://www.ncbi.nlm.nih.gov/pubmed/4924041. Accessed 12 Feb 2018.

    Article  Google Scholar 

  13. Branemark R. 1960-R. A biomechanical study of osseointegration : in-vivo measurements in rat: rabbit: dog and man. Goteborg: Goteborg University; 1996. https://gupea.ub.gu.se/handle/2077/17036. Accessed 12 Feb 2018.

    Google Scholar 

  14. Brånemark R, Thomsen P. Biomechanical and morphological studies on osseointegration in immunological arthritis in rabbits. Scand J Plast Reconstr Surg Hand Surg. 1997;31:185–95. http://www.ncbi.nlm.nih.gov/pubmed/9299679. Accessed 12 Feb 2018.

    Article  Google Scholar 

  15. Tjellström A, Lindström J, Hallén O, Albrektsson T, Brånemark PI. Osseointegrated titanium implants in the temporal bone. A clinical study on bone-anchored hearing aids. Am J Otol. 1981;2:304–10. http://www.ncbi.nlm.nih.gov/pubmed/6894824. Accessed 12 Feb 2018.

    PubMed  Google Scholar 

  16. Hagberg K, Brånemark R. One hundred patients treated with osseointegrated transfemoral amputation prostheses—rehabilitation perspective. J Rehabil Res Dev. 2009;46:331–44. http://www.ncbi.nlm.nih.gov/pubmed/19675986. Accessed 12 Feb 2018.

    Article  Google Scholar 

  17. Jönsson S, Caine-Winterberger K, Brånemark R. Osseointegration amputation prostheses on the upper limbs: methods, prosthetics and rehabilitation. Prosthet Orthot Int. 2011;35(2):190–200. https://doi.org/10.1177/0309364611409003. PMID: 21697201. http://www.ncbi.nlm.nih.gov/pubmed/21697201. Accessed 12 Feb 2018.

    Article  PubMed  Google Scholar 

  18. Brånemark R, Berlin O, Hagberg K, Bergh P, Gunterberg B, Rydevik B. A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients. Bone Joint J. 2014;96B:106–13. http://www.bjj.boneandjoint.org.uk/cgi/doi/10.1302/0301-620X.96B1.31905. Accessed 12 Feb 2018.

    Article  Google Scholar 

  19. Hagberg K, Brånemark R, Hägg O. Questionnaire for persons with a transfemoral amputation (Q-TFA): initial validity and reliability of a new outcome measure. J Rehabil Res Dev. 2004;41:695–706. http://www.ncbi.nlm.nih.gov/pubmed/15558399. Accessed 12 Feb 2018.

    Article  Google Scholar 

  20. Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–83. http://www.ncbi.nlm.nih.gov/pubmed/1593914. Accessed 12 Feb 2018.

    Article  Google Scholar 

  21. Ibáñez-Gimeno P, Galtés I, Jordana X, Malgosa A, Manyosa J. Biomechanics of forearm rotation: force and efficiency of pronator teres. PLoS One. 2014;9:e90319. http://dx.plos.org/10.1371/journal.pone.0090319. Accessed 12 Feb 2018.

    Article  Google Scholar 

  22. Li Y, Kulbacka-Ortiz K, Caine-Winterberger K, Brånemark R. Thumb amputations treated with osseointegrated percutaneous prostheses with up to 25 years of follow-up. J Am Acad Orthop Surg Glob Res Rev. 2019;3(1):e097. https://doi.org/10.5435/JAAOSGlobal-D-18-00097. eCollection 2019 Jan.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Brånemark R, Emanuelsson L, Palmquist A, Thomsen P. Bone response to laser-induced micro- and nano-size titanium surface features. Nanomed Nanotechnol Biol Med. 2011;7:220–7.

    Article  Google Scholar 

  24. Thesleff A, Branemark R, Hakansson B, Ortiz-Catalan M. Biomechanical characterisation of bone-anchored implant systems for amputation limb prostheses: a systematic review. Ann Biomed Eng. 2018;46(3):377–91. https://doi.org/10.1007/s10439-017-1976-4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoellwarth JS, Tetsworth K, Rozbruch SR, Handal MB, Coughlan A, Al Muderis M. Osseointegration for amputees: current implants, techniques, and future directions. JBJS Rev. 2020;8(3):e0043. https://doi.org/10.2106/JBJS.RVW.19.00043.

    Article  PubMed  PubMed Central  Google Scholar 

  26. McGough RL, Goodman MA, Randall RL, Forsberg JA, Potter BK, Lindsey B. The compress(R) transcutaneous implant for rehabilitation following limb amputation. Unfallchirurg. 2017;120(4):300–5. https://doi.org/10.1007/s00113-017-0339-9.

    Article  CAS  PubMed  Google Scholar 

  27. Ortiz-Catalan M. Towards natural control of artificial limbs: a novel osseointegrated human-machine gateway, neuromuscular electrodes, and pattern recognition. Gothenburg: Chalmers University of Technology; 2014.

    Google Scholar 

  28. Ortiz-Catalan M, Håkansson B, Brånemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci Transl Med. 2014;6:257re6.

    Article  Google Scholar 

  29. Ortiz-Catalan M, Brånemark R, Håkansson B, Delbeke J. On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online. 2012;11:33.

    Article  Google Scholar 

  30. Kilgore KL, Peckham PH, Montague FW, Hart RL, Bryden AM, Keith MW, et al. An implanted upper extremity neuroprosthesis utilizing myoelectric control. Proceedings of the 2nd international IEEE EMBS, conference on neural engineering. Arlington, VA: IEEE; 2005. p. 368–71.

    Google Scholar 

  31. Kilgore KL, H a H, Bryden AM, Hart RL, Keith MW, Peckham PH. An implanted upper-extremity neuroprosthesis using myoelectric control. J Hand Surg Am. 2008;33:539–50.

    Article  Google Scholar 

  32. Peckham PH, Keith MW, Kilgore KL, Grill JH, Wuolle KS, Thrope GB, et al. Efficacy of an implanted neuroprosthesis for restoring hand grasp in tetraplegia: a multicenter study. Arch Phys Med Rehabil. 2001;82:1380–8.

    Article  CAS  Google Scholar 

  33. Kilgore KL, Peckham PH, Keith MW, Montague FW, Hart RL, Gazdik MM, et al. Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. J Rehabil Res Dev. 2003;40:457–68.

    Article  Google Scholar 

  34. Nashold BS, Goldner JL, Mullen JB, Bright DS. Long-term pain control by direct peripheral-nerve stimulation the of joint long-term by direct. J Bone Jt Surg Am. 1982;64:1–10.

    Article  Google Scholar 

  35. De RD, Vanneste S, Engineer ND, Kilgard MP. Safety and efficacy of vagus nerve stimulation paired with tones for the treatment of tinnitus: a case series. Neuromodulation Technol Neural Interface 2013;17:170–9.

    Google Scholar 

  36. El TR, Raedt R, Mollet L, De Herdt V, Wyckhuys T, Wyckuys T, et al. A novel implantable vagus nerve stimulation system (ADNS-300) for combined stimulation and recording of the vagus nerve: pilot trial at Ghent University Hospital. Epilepsy Res 2010;92:231–9.

    Google Scholar 

  37. Ben-Menachem E, Rydenhag B, Silander H. Preliminary experience with a new system for vagus nerve stimulation for the treatment of refractory focal onset seizures. Epilepsy Behav. 2013;29:416–9.

    Article  Google Scholar 

  38. Schwartz AR, Bennett ML, Smith PL, De Backer W, Hedner J, Boudewyns A, et al. Therapeutic electrical stimulation of the hypoglossal nerve in obstructive sleep apnea. Arch Otolaryngol Head Neck Surg. 2001;127:1216–23.

    Article  CAS  Google Scholar 

  39. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, et al. Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res. 1998;813:181–6.

    Article  CAS  Google Scholar 

  40. Delbeke J. Electrodes and chronic optic nerve stimulation. Biocybern Biomed Eng. 2011;31:81–94.

    Article  Google Scholar 

  41. Haugland M, Sinkjaer T. Cutaneous whole nerve recordings used for correction of footdrop in hemiplegic man. IEEE Trans Rehabil Eng. 1995;3:307–17.

    Article  Google Scholar 

  42. Polasek KH, Hoyen HA, Keith MW, Kirsch RF, Tyler DJ. Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans Neural Syst Rehabil Eng. 2009;17:428–37.

    Article  Google Scholar 

  43. Memberg WD, Polasek KH, Hart RL, Bryden AM, Kilgore KL, G a N, et al. An implanted neuroprosthesis for restoring arm and hand function in people with high level tetraplegia. Arch Phys Med Rehabil. 2014;95(6):1201–1211.e1.

    Article  Google Scholar 

  44. Waters RL, McNeal DR, Faloon W, Clifford B, California D. Functional electrical stimulation of the peroneal nerve for hemiplegia. Long-term clinical follow-up. J Bone Jt Surg Am. 1985;67:792–3.

    Article  CAS  Google Scholar 

  45. Ortiz-Catalan M, Mastinu E, Brånemark R, Håkansson B. Direct neural sensory feedback and control via osseointegration. Cape Town: XVI World Congress of the International Society for Prosthetics and Orthotics; 2017.

    Google Scholar 

  46. Mastinu E, Doguet P, Botquin Y, Hakansson B, Ortiz-Catalan M. Embedded system for prosthetic control using implanted neuromuscular interfaces accessed via an osseointegrated implant. IEEE Trans Biomed Circuits Syst. 2017;11:867–77.

    Article  Google Scholar 

  47. Ortiz-Catalan M, Brånemark R. BioPatRec: a modular research platform for prosthetic control algorithms based on bioelectric pattern recognition. Hyderabad: XIV World Congress of the International Society for Prosthetics and Orthotics; 2013.

    Google Scholar 

  48. Ortiz-Catalan M, Håkansson B, Brånemark R. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms. IEEE Trans Neural Syst Rehabil Eng. 2014;22:756–64.

    Article  Google Scholar 

  49. Ortiz-Catalan M, Mastinu E, Sassu P, Aszmann O, Branemark R. Self-contained neuromusculoskeletal arm prostheses. N Engl J Med. 2020;382(18):1732–8. https://doi.org/10.1056/NEJMoa1917537.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rickard Brånemark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Ortiz-Catalan, M., Brånemark, R. (2021). Osseointegrated Amputation Prostheses and Implanted Electrodes. In: Aszmann, O.C., Farina, D. (eds) Bionic Limb Reconstruction. Springer, Cham. https://doi.org/10.1007/978-3-030-60746-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60746-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60745-6

  • Online ISBN: 978-3-030-60746-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics