Skip to main content

Transcranial Doppler Sonography

  • Reference work entry
  • First Online:
Noninvasive Vascular Diagnosis

Abstract

Transcranial ultrasound by means of transcranial Doppler (TCD) or color-coded duplex (TCCD) provides noninvasive and inexpensive vascular imaging tests that can be used in variety clinical situations to provide real-time physiological information that is often unobtainable with other diagnostic studies. Transcranial vascular ultrasound also provides diagnostic and prognostic information that determines patient management decisions across multiple cerebrovascular conditions and peri-procedural or surgical monitoring. In this chapter we describe complete diagnostic performance standards for transcranial vascular ultrasound as well as established clinical indications and specific diagnostic criteria for patients with cerebrovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74.

    Article  CAS  PubMed  Google Scholar 

  2. Moehring MA, Spencer MP. Power M-mode transcranial Doppler ultrasound and simultaneous single gate spectrogram. Ultrasound Med Biol. 2002;28:49–57.

    Article  PubMed  Google Scholar 

  3. Schöning M, Walter J. Evaluation of the vertebrobasilar-posterior system by transcranial color duplex sonography in adults. Stroke. 1992;23(9):1280–6.

    Article  PubMed  Google Scholar 

  4. Bartels E, Fuchs HH, Flügel KA. Color Doppler imaging of basal cerebral arteries: normal reference values and clinical applications. Angiology. 1995;46(10):877–84.

    Article  CAS  PubMed  Google Scholar 

  5. Nedelmann M, Stolz E, Gerriets T, Baumgartner RW, Malferrari G, Seidel G, Kaps M. Consensus recommendations for transcranial color-coded duplex sonography for the assessment of intracranial arteries in clinical trials on acute stroke. Stroke. 2009;40(10):3238–44.

    Article  PubMed  Google Scholar 

  6. Rogge A, Doepp F, Schreiber S, Valdueza JM. Transcranial color-coded duplex sonography of the middle cerebral artery: more than just the M1 segment. J Ultrasound Med. 2015;34(2):267–73.

    Article  PubMed  Google Scholar 

  7. Pade O, Eggers J, Schreiber SJ, Valdueza J. Complete basilar artery assessment by transcranial color-coded duplex sonography using the combined transforaminal and transtemporal approach. Ultraschall Med. 2011;32(Suppl 2):E63–8.

    PubMed  Google Scholar 

  8. Bartels E. Evaluation of arteriovenous malformations (AVMs) with transcranial color-coded duplex sonography: does the location of an AVM influence its sonographic detection? J Ultrasound Med. 2005;24(11):1511–7.

    Article  PubMed  Google Scholar 

  9. Turner CL, Higgins JN, Gholkar A, Mendelow AD, Molyneux AJ, Kerr RS, Chawda S, Kirkpatrick PJ. Intracranial aneurysms treated with endovascular coils: detection of recurrences using unenhanced and contrast-enhanced transcranial color-coded duplex sonography. Stroke. 2005;36(12):2654–9.

    Article  PubMed  Google Scholar 

  10. Kiphuth IC, Huttner HB, Breuer L, Schwab S, Köhrmann M. Sonographic monitoring of midline shift predicts outcome after intracerebral hemorrhage. Cerebrovasc Dis. 2012;34(4):297–304.

    Article  PubMed  Google Scholar 

  11. Gerriets T, Stolz E, Modrau B, Fiss I, Seidel G, Kaps M. Sonographic monitoring of midline shift in hemispheric infarctions. Neurology. 1999;52:45–9.

    Article  CAS  PubMed  Google Scholar 

  12. Otis SM, Ringelstein EB. The transcranial Doppler examination: principles and applications of transcranial Doppler sonography. In: Tegeler CH, Babikian VL, Gomez CR, editors. Neurosonology. St. Louis: Mosby; 1996. p. 140–55.

    Google Scholar 

  13. Hennerici M, Rautenberg W, Sitzer G, Schwartz A. Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity – part 1. Examination technique and normal values. Surg Neurol. 1987;27(5):439–48.

    Article  CAS  PubMed  Google Scholar 

  14. Alexandrov AV, Sloan MA, Wong LK, Douville C, Razumovsky AY, Koroshetz WJ. Practice standards for transcranial Doppler ultrasound: part I – test performance. J Neuroimaging. 2007;17:11–8.

    Article  PubMed  Google Scholar 

  15. Bragoni M, Feldmann E. Transcranial Doppler indices of intracranial hemodynamics. In: Tegeler CH, Babikian VL, Gomez CR, editors. Neurosonology. St. Louis: Mosby; 1996. p. 129–39.

    Google Scholar 

  16. Lindegaard KF, Gromilund P, Aaslid R, et al. Evaluation of cerebral AVMs using transcranial Doppler ultrasound. J Neurosurg. 1986;65:335–44.

    Article  CAS  PubMed  Google Scholar 

  17. Lindegaard KF, Nornes H, Bakke SJ, et al. Cerebral vasospasm diagnosis by means of angiography and blood velocity measurements. Acta Neurochir. 1987;100:12–24.

    Article  Google Scholar 

  18. Kontos HA. Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke. 1989;20:1–3.

    Article  CAS  PubMed  Google Scholar 

  19. Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32:737–42.

    Article  CAS  PubMed  Google Scholar 

  20. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke. 1989;20:45.

    Article  CAS  PubMed  Google Scholar 

  21. Reinhard M, Schwarzer G, Briel M, Altamura C, Palazzo P, King A, et al. Cerebrovascular reactivity predicts stroke in high-grade carotid artery disease. Neurology. 2014;83:1424–31.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tsivgoulis G, Neumyer MM, Alexandrov AV. Diagnostic criteria for cerebrovascular ultrasound. In: Alexandrov AV, editor. Cerebrovascular ultrasound in stroke prevention and treatment. 2nd ed. Oxford: Wiley-Blackwell; 2011. p. 87–143.

    Google Scholar 

  23. Alexandrov AV, Sloan MA, Tegeler CH, Newell DN, Lumsden A, Garami Z, et al. Practice standards for transcranial Doppler (TCD) ultrasound. Part II. Clinical indications and expected outcomes. J Neuroimaging. 2012;22(3):215–24.

    Article  PubMed  Google Scholar 

  24. Adams RJ, McKie VC, Hsu L, Files B, Vichinsky E, Pegelow C, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339:5–11.

    Article  CAS  PubMed  Google Scholar 

  25. Lee MT, Piomelli S, Granger S, Miller ST, Harkness S, Brambilla DJ, STOP Study Investigators, et al. Stroke prevention trial in sickle cell anemia (STOP): extended follow-up and final results. Blood. 2006;108:847–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adams RJ, Brambilla D. Optimizing primary stroke prevention in sickle cell anemia (STOP 2) trial investigators. Discontinuing prophylactic transfusions used to prevent stroke in sickle cell disease. N Engl J Med. 2005;353:2769–78.

    Article  CAS  PubMed  Google Scholar 

  27. Bernaudin F, Verlhac S, Arnaud C, Kamdem A, Hau I, Leveillé E, et al. Long term follow-up of children with sickle cell anemia treated for abnormal transcranial Doppler velocities. Blood. 2016;127(14):1814–22.

    Article  CAS  PubMed  Google Scholar 

  28. Ware RE, Davis BR, Schultz WH, et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD with transfusions changing to hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial. Lancet. 2016;387:661–70.

    Article  CAS  PubMed  Google Scholar 

  29. Nichols FT, Jones AM, Adams RJ. Stroke prevention in sickle cell disease (STOP) study guidelines for transcranial Doppler testing. J Neuroimaging. 2001;11:354–62.

    Article  CAS  PubMed  Google Scholar 

  30. Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJ, Wijdicks EF, Muizelaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41(10):2391–5.

    Article  PubMed  Google Scholar 

  31. Sloan MA. Transcranial Doppler monitoring of vasospasm after subarachnoid hemorrhage. In: Tegeler CH, Babikian VL, Gomez CR, editors. Neurosonology. St. Louis: Mosby; 1996. p. 156–71.

    Google Scholar 

  32. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien). 1988;42:81–4.

    CAS  Google Scholar 

  33. Newell DW, Grady MS, Eskridge JM, et al. Distribution of angiographic vasospasm after subarachnoid hemorrhage: implications for diagnosis by TCD. Neurosurgery. 1990;27:574–7.

    Article  CAS  PubMed  Google Scholar 

  34. Sloan MA, Haley EC Jr, Kassell NF, et al. Sensitivity and specificity of transcranial Doppler ultrasonography in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology. 1989;39:1514–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sloan MA, Burch CM, Wozniak MA, et al. Transcranial Doppler detection of vertebrobasilar vasospasm following subarachnoid hemorrhage. Stroke. 1994;25:2187–97.

    Article  CAS  PubMed  Google Scholar 

  36. Burch CM, Wozniak MA, Sloan MA, et al. Detection of intracranial internal carotid artery and middle cerebral artery vasospasm following subarachnoid hemorrhage. J Neuroimaging. 1996;6:8–15.

    Article  CAS  PubMed  Google Scholar 

  37. Wozniak MA, Sloan MA, Rothman MI, et al. Detection of vasospasm by transcranial Doppler sonography. The challenges of the anterior and posterior cerebral arteries. J Neuroimaging. 1996;6:87–93.

    Article  CAS  PubMed  Google Scholar 

  38. Soustiel JF, Shik V, Shreiber R, Tavor Y, Goldsher D. Basilar vasospasm diagnosis: investigation of a modified “Lindegaard index” based on imaging studies and blood velocity measurements of the basilar artery. Stroke. 2002;33(1):72–7.

    Article  PubMed  Google Scholar 

  39. Sviri GE, Lewis DH, Correa R, et al. Basilar artery vasospasm and delayed posterior circulation ischemia after aneurismal subarachnoid hemorrhage. Stroke. 2004;35:1867–72.

    Article  PubMed  Google Scholar 

  40. Sviri GE, Ghodke B, Britz GW, Douville CM, Haynor DR, Mesiwala AH, Lam AM, Newell DW. Transcranial Doppler grading criteria for basilar artery vasospasm. Neurosurgery. 2006;59(2):360–6.

    Article  PubMed  Google Scholar 

  41. Kincaid MS, Souter MJ, Treggiari MM, et al. Accuracy of transcranial Doppler ultrasonography and single-photon emission computed tomography in the diagnosis of angiographically demonstrated cerebral vasospasm. J Neurosurg. 2009;110:67–72.

    Article  PubMed  Google Scholar 

  42. Sloan MA, Alexandrov AV, Tegeler CH, et al. Therapeutics and technology assessment subcommittee of the American Academy of Neurology assessment: transcranial Doppler ultrasonography: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology. 2004;62:1468–81.

    Article  CAS  PubMed  Google Scholar 

  43. Piepgras A, Hagen T, Schmiadek P. Reliable prediction of grade of angiographic vasospasm by transcranial Doppler sonography. Stroke. 1994;25:260.

    Google Scholar 

  44. Giller CA, Hatab MR, Giller AM. Estimation of vessel flow and diameter during cerebral vasospasm using transcranial Doppler indices. Neurosurgery. 1998;42(5):1076–81.

    Article  CAS  PubMed  Google Scholar 

  45. Chen SP, Fuh JL, Chang FC, Lirng JF, Shia BC, Wang SJ. Transcranial color Doppler study for reversible cerebral vasoconstriction syndromes. Ann Neurol. 2008;63(6):751–7.

    Article  PubMed  Google Scholar 

  46. Wilterdink JL, Feldmann E, Furie KL, et al. Transcranial Doppler ultrasound battery reliably identifies severe internal carotid artery stenosis. Stroke. 1997;28:133–6.

    Article  CAS  PubMed  Google Scholar 

  47. Christou I, Felberg RA, Demchuk AM, et al. Accuracy parameters of a broad diagnostic battery for bedside transcranial Doppler to detect flow changes with internal carotid artery stenosis or occlusion. J Neuroimaging. 2001;11:236–42.

    Article  CAS  PubMed  Google Scholar 

  48. Schneider PA, Rossman ME, Bernstein EF, Torem S, Ringelstein EB, Otis SM. Effect of internal carotid artery occlusion on intracranial hemodynamics. Transcranial Doppler evaluation and clinical correlation. Stroke. 1988;19:589–93.

    Article  CAS  PubMed  Google Scholar 

  49. Akopov S, Whitman GT. Hemodynamic studies in early ischemic stroke: serial transcranial Doppler and magnetic resonance angiography evaluation. Stroke. 2002;33:1274–9.

    Article  CAS  PubMed  Google Scholar 

  50. Tsivgoulis G, Sharma VK, Lao AY, et al. Validation of transcranial Doppler with computed tomography angiography in acute cerebral ischemia. Stroke. 2007;38:1245–9.

    Article  PubMed  Google Scholar 

  51. Brunser AM, Lavados PM, Hoppe A, et al. Accuracy of transcranial Doppler compared with CT angiography in diagnosing arterial obstructions in acute ischemic strokes. Stroke. 2009;40:2037–41.

    Article  PubMed  Google Scholar 

  52. Alexandrov AV, Demchuk A, Wein T, et al. The yield of transcranial Doppler in acute cerebral ischemia. Stroke. 1999;30:1605–9.

    Article  Google Scholar 

  53. Tsivgoulis G, Sharma VK, Hoover SL, et al. Applications and advantages of power motion-mode Doppler in acute posterior circulation cerebral ischemia. Stroke. 2008;39:1197–204.

    Article  PubMed  Google Scholar 

  54. Arning C, Widder B, von Reutern GM, Stiegler H, Görtler M. Revision of DEGUM ultrasound criteria for grading internal carotid artery stenoses and transfer to NASCET measurement. Ultraschall Med. 2010;31:251–7.

    Article  CAS  PubMed  Google Scholar 

  55. Barlinn K, Rickmann H, Kitzler H, et al. Validation of multiparametric ultrasonography criteria with digital subtraction angiography in carotid artery disease: a prospective multicenter study. Ultraschall Med. 2018;39(5):535–43.

    Article  PubMed  Google Scholar 

  56. Alexandrov AV. The Spencer’s curve: clinical implications of a classic hemodynamic model. J Neuroimaging. 2007;17:6–10.

    Article  PubMed  Google Scholar 

  57. Navarro JC, Lao AY, Sharma VK, Tsivgoulis G, Alexandrov AV. The accuracy of transcranial Doppler in the diagnosis of middle cerebral artery stenosis. Cerebrovasc Dis. 2007;23:325–30.

    Article  PubMed  Google Scholar 

  58. Lindegaard KF, Bakke SJ, Aaslid R, Nornes H. Doppler diagnosis of intracranial artery occlusive disorders. J Neurol Neurosurg Psychiatry. 1986;49:510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. de Bray JM, Joseph PA, Jeanvoine H, Maugin D, Dauzat M, Plassard F. Transcranial Doppler evaluation of middle cerebral artery stenosis. J Ultrasound Med. 1988;7:611–6.

    Article  PubMed  Google Scholar 

  60. Ley-Pozo J, Ringelstein EB. Noninvasive detection of occlusive disease of the carotid siphon and middle cerebral artery. Ann Neurol. 1990;28:640–7.

    Article  CAS  PubMed  Google Scholar 

  61. Mattle H, Grolimund P, Huber P, Sturzenegger M, Zurbrügg HR. Transcranial Doppler sonographic findings in middle cerebral artery disease. Arch Neurol. 1988;45:289–95.

    Article  CAS  PubMed  Google Scholar 

  62. Brass LM, Duterte DL, Mohr JP. Anterior cerebral artery velocity changes in disease of the middle cerebral artery stem. Stroke. 1989;20:1737–40.

    Article  CAS  PubMed  Google Scholar 

  63. Schwarze JJ, Babikian V, DeWitt LD, Sloan MA, Wechsler LR, Gomez CR, Pochay V, Baker E. Longitudinal monitoring of intracranial arterial stenoses with transcranial Doppler ultrasonography. J Neuroimaging. 1994;4:182–7.

    Article  CAS  PubMed  Google Scholar 

  64. Babikian V, Sloan MA, Tegeler CH, et al. Transcranial Doppler validation pilot study. J Neuroimaging. 1993;3:242–9.

    Article  CAS  PubMed  Google Scholar 

  65. Chen J, Wang L, Bai J, Lun Z, Zhang J, Xing Y. The optimal velocity criterion in the diagnosis of unilateral middle cerebral artery stenosis by transcranial Doppler. Cell Biochem Biophys. 2014;69(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  66. Feldmann E, Wilterdink JL, Kosinski A, Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) Trial Investigators, et al. The stroke outcomes and neuroimaging of intracranial atherosclerosis (SONIA) trial. Neurology. 2007;68:2099–106.

    Article  CAS  PubMed  Google Scholar 

  67. Zhao L, Barlinn K, Sharma VK, Tsivgoulis G, Cava LF, Vasdekis SN, et al. Velocity criteria for intracranial stenosis revisited: an international multicenter study of transcranial Doppler (TCD) and digital subtraction angiography (DSA). Stroke. 2011;42(12):3429–34.

    Article  PubMed  Google Scholar 

  68. Alexandrov AV, Demchuk AM, Felberg RA, Grotta JC, Krieger DW. Intracranial clot dissolution is associated with embolic signals on transcranial Doppler. J Neuroimaging. 2000;10:27–32.

    Article  CAS  PubMed  Google Scholar 

  69. Fu X, Yin J, Wong KS, Gao C. Reevaluating the transcranial Doppler criteria for estimation of anterior circulation artery stenosis: transcranial Doppler sonography versus digital subtraction angiography. J Ultrasound Med. 2012;31(8):1187–91.

    Article  PubMed  Google Scholar 

  70. Navarro JC, Mikulik R, Garami Z, Alexandrov AV. The accuracy of transcranial Doppler in the diagnosis of stenosis or occlusion of the terminal internal carotid artery. J Neuroimaging. 2004;14(4):314–8.

    Article  PubMed  Google Scholar 

  71. Hennerici M, Rautenberg W, Schwartz A. Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity – part 2. Evaluation of intracranial arterial disease. Surg Neurol. 1987;27:523–32.

    Article  CAS  PubMed  Google Scholar 

  72. Kimura K, Minematsu K, Yasaka M, Wada K, Yamaguchi T. Evaluation of posterior cerebral artery flow velocity by transcranial color-coded real-time sonography. Ultrasound Med Biol. 2000;26:195–9.

    Article  CAS  PubMed  Google Scholar 

  73. Ringelstein EB. Ultrasonic diagnosis of the vertebrobasilar system. II. Transnuchal diagnosis of intracranial vertebrobasilar stenoses using a novel pulsed Doppler system. Ultraschall Med. 1985;6:60–7.

    Article  CAS  PubMed  Google Scholar 

  74. Droste DW, Nabavi DG, Kemény V, et al. Echocontrast enhanced transcranial colour-coded duplex offers improved visualization of the vertebrobasilar system. Acta Neurol Scand. 1998;98:193–9.

    Article  CAS  PubMed  Google Scholar 

  75. Postert T, Federlein J, Przuntek H, Büttner T. Power-based versus conventional transcranial color-coded duplex sonography in the assessment of the vertebrobasilar-posterior system. J Stroke Cerebrovasc Dis. 1997;6:398–404.

    Article  CAS  PubMed  Google Scholar 

  76. Nicolau C, Gilabert R, García A, Blasco J, Chamorro A, Brú C. Effect of internal carotid artery occlusion on vertebral artery blood flow: a duplex ultrasonographic evaluation. J Ultrasound Med. 2001;20:105–11.

    Article  CAS  PubMed  Google Scholar 

  77. Ribo M, Garami Z, Uchino K, Song J, Molina CA, Alexandrov AV. Detection of reversed basilar flow with power-motion Doppler after acute occlusion predicts favorable outcome. Stroke. 2004;35:79–82.

    Article  PubMed  Google Scholar 

  78. de Bray JM, Missoum A, Dubas F, Emile J, Lhoste P. Detection of vertebrobasilar intracranial stenoses: transcranial Doppler sonography versus angiography. J Ultrasound Med. 1997;16:213–8.

    Article  PubMed  Google Scholar 

  79. Tian JW, Sun LT, Zhao ZW, Gao J. Transcranial color Doppler flow imaging in detecting severe stenosis of the intracranial vertebral artery: a prospective study. Clin Imaging. 2006;30(1):1–5.

    Article  PubMed  Google Scholar 

  80. Chernyshev OY, Garami Z, Calleja S, et al. Yield and accuracy of urgent combined carotid/transcranial ultrasound testing in acute cerebral ischemia. Stroke. 2005;36:32–7.

    Article  PubMed  Google Scholar 

  81. Burgin WS, Malkoff M, Felberg RA, et al. Transcranial Doppler ultrasound criteria for recanalization after thrombolysis for middle cerebral artery stroke. Stroke. 2000;31:1128–32.

    Article  CAS  PubMed  Google Scholar 

  82. Demchuk AM, Burgin WS, Christou I, et al. Thrombolysis in brain ischemia (TIBI) transcranial Doppler flow grades predict clinical severity, early recovery, and mortality in patients treated with intravenous tissue plasminogen activator. Stroke. 2001;32:89–93.

    Article  CAS  PubMed  Google Scholar 

  83. Tsivgoulis G, Ribo M, Rubiera M, et al. Real-time validation of transcranial Doppler criteria in assessing recanalization during intra-arterial procedures for acute ischemic stroke: an international, multicenter study. Stroke. 2013;44:394–400.

    Article  PubMed  Google Scholar 

  84. Gahn G, Gerber J, Hallmeyer S, Hahn G, Ackerman RH, Reichmann H, von Kummer R. Contrast-enhanced transcranial color-coded duplex sonography in stroke patients with limited bone windows. Am J Neuroradiol. 2000;21:509–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Demchuk AM, Christou I, Wein TH, Felberg RA, Malkoff M, Grotta JC, Alexandrov AV. Specific transcranial Doppler flow findings related to the presence and site of arterial occlusion. Stroke. 2000;31:140–6.

    Article  CAS  PubMed  Google Scholar 

  86. Grolimund P, Seiler RW, Aaslid R, Huber P, Zurbruegg H. Evaluation of cerebrovascular disease by combined extracranial and transcranial Doppler sonography. Experience in 1,039 patients. Stroke. 1987;18:1018–24.

    Article  CAS  PubMed  Google Scholar 

  87. Zanette EM, Fieschi C, Bozzao L, et al. Comparison of cerebral angiography and transcranial Doppler sonography in acute stroke. Stroke. 1989;20:899–903.

    Article  CAS  PubMed  Google Scholar 

  88. Kaps M, Damian MS, Teschendorf U, Dorndorf W. Transcranial Doppler ultrasound findings in middle cerebral artery occlusion. Stroke. 1990;21:532–7.

    Article  CAS  PubMed  Google Scholar 

  89. Camerlingo M, Casto L, Censori B, Ferraro B, Gazzaniga GC, Mamoli A. Transcranial Doppler in acute ischemic stroke of the middle cerebral artery territories. Acta Neurol Scand. 1993;88:108–11.

    Article  CAS  PubMed  Google Scholar 

  90. El-Mitwalli A, Saad M, Christou I, Malkoff M, Alexandrov AV. Clinical and sonographic patterns of tandem internal carotid artery/middle cerebral artery occlusion in tissue plasminogen activator-treated patients. Stroke. 2002;33:99–102.

    Article  CAS  PubMed  Google Scholar 

  91. Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–31.

    Article  PubMed  Google Scholar 

  92. Lin YH, Liu HM. Update on cerebral hyperperfusion syndrome. J Neurointerv Surg. 2020;12(8):788–93.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shimonaga K, Matsushige T, Hosogai M, et al. Hyperperfusion after endovascular reperfusion therapy for acute ischemic stroke. J Stroke Cerebrovasc Dis. 2019;28(5):1212–8.

    Article  PubMed  Google Scholar 

  94. Reigel MM, Hollier LH, Sundt TM Jr, Piepgras DG, Sharbrough FW, Cherry KJ. Cerebral hyperperfusion syndrome: a cause of neurologic dysfunction after carotid endarterectomy. J Vasc Surg. 1987;5:628–34.

    Article  CAS  PubMed  Google Scholar 

  95. Dalman JE, Beenakkers IC, Moll FL, Leusink JA, Ackerstaff RG. Transcranial Doppler monitoring during carotid endarterectomy helps to identify patients at risk of postoperative hyperperfusion. Eur J Vasc Endovasc Surg. 1999;18:222–7.

    Article  CAS  PubMed  Google Scholar 

  96. Pennekamp CW, Tromp SC, Ackerstaff RG, et al. Prediction of cerebral hyperperfusion after carotid endarterectomy with transcranial Doppler. Eur J Vasc Endovasc Surg. 2012;43(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  97. Buczek J, Karliński M, Kobayashi A, Białek P, Członkowska A. Hyperperfusion syndrome after carotid endarterectomy and carotid stenting. Cerebrovasc Dis. 2013;35(6):531–7.

    Article  PubMed  Google Scholar 

  98. Tsivgoulis G, Alexandrov AV, Sloan MA. Advances in transcranial Doppler ultrasonography. Curr Neurol Neurosci Rep. 2009;9:46–54.

    Article  PubMed  Google Scholar 

  99. Rubiera M, Cava L, Tsivgoulis G, Patterson DE, Zhao L, Zhang Y, Anderson AM, Robinson A, Harrigan MR, Underwood E, Horton J, Alexandrov AV. Diagnostic criteria and yield of real-time transcranial Doppler monitoring of intra-arterial reperfusion procedures. Stroke. 2010;41(4):695–9.

    Article  PubMed  Google Scholar 

  100. Kneihsl M, Niederkorn K, Deutschmann H, et al. Increased middle cerebral artery mean blood flow velocity index after stroke thrombectomy indicates increased risk for intracranial hemorrhage. J Neurointerv Surg. 2018;10(9):882–7.

    Article  PubMed  Google Scholar 

  101. Martins AI, Sargento-Freitas J, Silva F, et al. Recanalization modulates association between blood pressure and functional outcome in acute ischemic stroke. Stroke. 2016;47:1571–6.

    Article  CAS  PubMed  Google Scholar 

  102. Padayachee TS, Kirkham FJ, Lewis RR, Gillard J, Hutchinson MC, Gosling RG. Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: a method of assessing the circle of Willis. Ultrasound Med Biol. 1986;12:5–14.

    Article  CAS  PubMed  Google Scholar 

  103. Bass A, Krupski WC, Dilley RB, Bernstein EF, Otis SM. Comparison of transcranial and cervical continuous-wave Doppler in the evaluation of intracranial collateral circulation. Stroke. 1990;21:1584–8.

    Article  CAS  PubMed  Google Scholar 

  104. Schneider PA, Rossman ME, Bernstein EF, Ringelstein EB, Otis SM. Noninvasive assessment of cerebral collateral blood supply through the ophthalmic artery. Stroke. 1991;22:31–6.

    Article  CAS  PubMed  Google Scholar 

  105. Rutgers DR, Klijn CJ, Kappelle LJ, van Huffelen AC, van der Grond J. A longitudinal study of collateral flow patterns in the circle of Willis and the ophthalmic artery in patients with a symptomatic internal carotid artery occlusion. Stroke. 2000;31:1913–20.

    Article  CAS  PubMed  Google Scholar 

  106. Markus HS, Harrison MJ. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke. 1992;23:668–73.

    Article  CAS  PubMed  Google Scholar 

  107. Vernieri F, Pasqualetti P, Matheis M, et al. Effect of collateral flow and cerebral vasomotor reactivity on the outcome of carotid artery occlusion. Stroke. 2001;32:1552–8.

    Article  CAS  PubMed  Google Scholar 

  108. Silverstrini M, Vernieri F, Pasqualetti P, et al. Impaired vasosmotor reactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA. 2000;283:2122–7.

    Article  Google Scholar 

  109. Apruzzese A, Silvestrini M, Floris R, et al. Cerebral hemodynamics in asymptomatic patients with internal carotid artery occlusion: a dynamic susceptibility contrast MR and transcranial Doppler study. AJNR Am J Neuroradiol. 2001;22:1062–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Vernieri F, Pasqualetti P, Diomedi M, et al. Cerebral hemodynamics in patients with carotid artery occlusion and contralateral moderate or severe internal carotid artery stenosis. J Neurosurg. 2001;94:559–64.

    Article  CAS  PubMed  Google Scholar 

  111. Silvestrini M, Paolino I, Vernieri F, et al. Cerebral hemodynamics and cognitive performance in patients with asymptomatic carotid stenosis. Neurology. 2009;72:1062–8.

    Article  CAS  PubMed  Google Scholar 

  112. Balestrini S, Perozzi C, Altamura C, Vernieri F, Luzzi S, Bartolini M, Provinciali L, Silvestrini M. Severe carotid stenosis and impaired cerebral hemodynamics can influence cognitive deterioration. Neurology. 2013;80(23):2145–50.

    Article  PubMed  Google Scholar 

  113. Buratti L, Balucani C, Viticchi G, Falsetti L, Altamura C, Avitabile E, Provinciali L, Vernieri F, Silvestrini M. Cognitive deterioration in bilateral asymptomatic severe carotid stenosis. Stroke. 2014;45(7):2072–7.

    Article  PubMed  Google Scholar 

  114. Portegies ML, de Bruijn RF, Hofman A, Koudstaal PJ, Ikram MA. Cerebral vasomotor reactivity and risk of mortality: the Rotterdam study. Stroke. 2014;45:42–7.

    Article  PubMed  Google Scholar 

  115. Russell D. The detection of cerebral emboli using Doppler ultrasound. In: Newell DW, Aaslid R, editors. Transcranial Doppler. New York: Revwn; 1992. p. 52–8.

    Google Scholar 

  116. Markus HS, King A, Shipley M, et al. Asymptomatic embolisation for prediction of stroke in the asymptomatic carotid emboli study (ACES): a prospective observational study. Lancet Neurol. 2010;9:70120-4.

    Article  Google Scholar 

  117. Ritter MA, Dittrich R, Thoenissen N, et al. Prevalence and prognostic impact of microembolic signals in arterial sources of embolism. A systematic review of the literature. J Neurol. 2008;255:953–61.

    Article  PubMed  Google Scholar 

  118. King A, Markus HS. Doppler embolic signals in cerebrovascular disease and prediction of stroke risk: a systematic review and metaanalysis. Stroke. 2009;40:3711–7.

    Article  PubMed  Google Scholar 

  119. Deverall PB, Padayachee TS, Parsons S, et al. Ultrasound detection of micro-emboli in the middle cerebral artery during cardiopulmonary bypass surgery. Eur J Cardiothorac Surg. 1988;2:256–60.

    Article  CAS  PubMed  Google Scholar 

  120. Spencer MP, Thomas GI, Nicholls SC, et al. Detection of middle cerebral artery emboli during carotid endarterectomy using transcranial Doppler ultrasonography. Stroke. 1990;21:415–23.

    Article  CAS  PubMed  Google Scholar 

  121. Piorkowski M, Kläffling C, Botsios S, et al. Postinterventional microembolism signals detected by transcranial Doppler ultrasound after carotid artery stenting. Vasa. 2015;44(1):49–57.

    Article  PubMed  Google Scholar 

  122. Sheriff F, Diz-Lopes M, Khawaja A, et al. Microemboli after successful Thrombectomy do not affect outcome but predict new embolic events. Stroke. 2020;51(1):154–61.

    Article  PubMed  Google Scholar 

  123. Clark RE, Brillman J, Davis DA, Lovell MR, Price TR, Magovern GJ. Microemboli during coronary artery bypass grafting. Genesis and effect on outcome. J Thorac Cardiovasc Surg. 1995;109:249–57.

    Google Scholar 

  124. Das AS, Regenhardt RW, LaRose S, monk AD, Castro PM, Sheriff FG, Sorond FA, Vaitkevicius H. microembolic signals detected by transcranial Doppler predict future stroke and poor outcomes. J Neuroimaging. 2020;30(6):882–889.

    Google Scholar 

  125. Udesh R, Natarajan P, Thiagarajan K, et al. Transcranial Doppler monitoring in carotid endarterectomy: a systematic review and meta-analysis. J Ultrasound Med. 2017;36(3):621–30.

    Article  PubMed  Google Scholar 

  126. Diegeler A, Hirsch R, Schneider F, et al. Neuromonitoring and neurocognitive outcome in off-pump versus conventional coronary bypass operation. Ann Thorac Surg. 2000;69:1162–6.

    Article  CAS  PubMed  Google Scholar 

  127. Ringelstein EB, Droste DW, Babikian VL, et al. Consensus on microembolus detection by TCD. International consensus group on microembolus detection. Stroke. 1998;29:725–9.

    Article  CAS  PubMed  Google Scholar 

  128. International Cerebral Hemodynamics Society. The international cerebral hemodynamics society consensus statement. Stroke. 1995;26:1123.

    Google Scholar 

  129. Babikian VL, Feldmann E, Wechsler LR, et al. Transcranial Doppler ultrasonography: year 2000 update. J Neuroimaging. 2000;10:101–15.

    Article  CAS  PubMed  Google Scholar 

  130. Garg A, Thawabi M, Rout A, Sossou C, Cohen M, Kostis JB. Recurrent stroke reduction with patent foramen Ovale closure versus medical therapy based on patent foramen Ovale characteristics: a meta-analysis of randomized controlled trials. Cardiology. 2019;144:40–9.

    Article  PubMed  Google Scholar 

  131. Katsanos AH, Psaltopoulou T, Sergentanis TN, et al. Transcranial Doppler versus transthoracic echocardiography for the detection of patent foramen ovale in patients with cryptogenic cerebral ischemia: a systematic review and diagnostic test accuracy meta-analysis. Ann Neurol. 2016;79:625–35.

    Article  PubMed  Google Scholar 

  132. Droste DW, Silling K, Stypmann J, et al. Contrast transcranial Doppler ultrasound in the detection of right-to-left shunts: time window and threshold in microbubble numbers. Stroke. 2000;31:1640–5.

    Article  CAS  PubMed  Google Scholar 

  133. Nyguen AT, Jogestrand T. Detection of patent foramen ovale by transcranial Doppler and carotid duplex ultrasonography: a comparison with transesophageal echocardiography. Clin Physiol. 1998;18:327–33.

    Article  Google Scholar 

  134. Jauss M, Kaps M, Keberle M, et al. A comparison of transesophageal echocardiography and transcranial Doppler sonography with contrast medium for detection of patent foramen ovale. Stroke. 1994;25:1265–7.

    Article  CAS  PubMed  Google Scholar 

  135. Jauss M, Zanette E. Detection of right-to-left shunt with ultrasound contrast agent and transcranial Doppler sonography. Cerebrovasc Dis. 2000;10:490–6.

    Article  CAS  PubMed  Google Scholar 

  136. Spencer MP, Moehring MA, Jesurum J, et al. Power m-mode transcranial Doppler for diagnosis of patent foramen ovale and assessing transcatheter closure. J Neuroimaging. 2004;14:342–9.

    Article  PubMed  Google Scholar 

  137. Lao AY, Sharma VK, Tsivgoulis G, et al. Detection of right-to-left shunts: comparison between the international consensus and Spencer logarithmic scale criteria. J Neuroimaging. 2008;18:402–6.

    Article  PubMed  Google Scholar 

  138. Lao AY, Sharma VK, Tsivgoulis G, et al. Effect of body positioning during transcranial Doppler detection of right-to-left shunts. Eur J Neurol. 2007;14:1035–9.

    Article  CAS  PubMed  Google Scholar 

  139. Mojadidi MK, Roberts SC, Winoker JS, Romero J, Goodman-Meza D, Gevorgyan R, Tobis JM. Accuracy of transcranial Doppler for the diagnosis of intracardiac right-to-left shunt: a bivariate meta-analysis of prospective studies. JACC Cardiovasc Imaging. 2014;7(3):236–50.

    Article  PubMed  Google Scholar 

  140. Tobe J, Bogiatzi C, Munoz C, Tamayo A, Spence JD. Transcranial Doppler is complementary to echocardiography for detection and risk stratification of patent Foramen Ovale. Can J Cardiol. 2016;32:986.e9–986.e16.

    Article  Google Scholar 

  141. Jesurum JT, Fuller CJ, Renz J, et al. Diagnosis of secondary source of right-to-left shunt with balloon occlusion of patent foramen ovale and power M-mode transcranial Doppler. JACC Cardiovasc Interv. 2009;2:561–56.

    Article  PubMed  Google Scholar 

  142. Nornes H, Angelsen B, Lindegaard KF. Precerebral arterial blood flow pattern in intracranial hypertension with cerebral blood flow arrest. Acta Neurochir. 1977;38:187–94.

    Article  CAS  PubMed  Google Scholar 

  143. Homburg AM, Jakobsen M, Enevoldsen E. Transcranial Doppler recordings in raised intracranial pressure. Acta Neurol Scand. 1993;87:488–93.

    Article  CAS  PubMed  Google Scholar 

  144. Mayer SA, Thomas CE, Diamond BE. Asymmetry of intracranial hemodynamics as an indicator of mass effect in acute intracerebral hemorrhage. A transcranial Doppler study. Stroke. 1996;27:1788–92.

    Article  CAS  PubMed  Google Scholar 

  145. Richards HK, Czosnyka M, Whitehouse H, Pickard JD. Increase in transcranial Doppler pulsatility index does not indicate the lower limit of cerebral autoregulation. Acta Neurochir Suppl. 1998;71:229–32.

    CAS  PubMed  Google Scholar 

  146. Treib J, Becker SC, Grauer M, Haass A. Transcranial Doppler monitoring of intracranial pressure therapy with mannitol, sorbitol and glycerol in patients with acute stroke. Eur Neurol. 1998;40:212–9.

    Article  CAS  PubMed  Google Scholar 

  147. Rainov NG, Weise JB, Burkert W. Transcranial Doppler sonography in adult hydrocephalic patients. Neurosurg Rev. 2000;23:34–8.

    Article  CAS  PubMed  Google Scholar 

  148. Kirkham FJ, Levin SD, Padayachee TS, Kyme MC, Neville BG, Gosling RG. Transcranial pulsed Doppler ultrasound findings in brain stem death. J Neurol Neurosurg Psychiatry. 1987;50:1504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ropper AH, Kehne SM, Wechsler L. Transcranial Doppler in brain death. Neurology. 1987;37(11):1733–5.

    Article  CAS  PubMed  Google Scholar 

  150. Hassler W, Steinmetz H, Pirschel J. Transcranial Doppler study of intracranial circulatory arrest. J Neurosurg. 1989;71:195–201.

    Article  CAS  PubMed  Google Scholar 

  151. Bode H, Sauer M, Pringsheim W. Diagnosis of brain death by transcranial Doppler sonography. Arch Dis Child. 1988;63:1474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Newell DW, Grady MS, Sirotta P, Winn HR. Evaluation of brain death using transcranial Doppler. Neurosurgery. 1989;24:509–13.

    Article  CAS  PubMed  Google Scholar 

  153. Petty GW, Mohr JP, Pedley TA, Tatemichi TK, Lennihan L, Duterte DI, Sacco RL. The role of transcranial Doppler in confirming brain death: sensitivity, specificity, and suggestions for performance and interpretation. Neurology. 1990;40:300–3.

    Article  CAS  PubMed  Google Scholar 

  154. Ducrocq X, Hassler W, Moritake K, Newell DW, von Reutern GM, Shiogai T, Smith RR. Consensus opinion on diagnosis of cerebral circulatory arrest using Doppler-sonography: task force group on cerebral death of the Neurosonology Research Group of the World Federation of Neurology. J Neurol Sci. 1998;159:145–50.

    Article  CAS  PubMed  Google Scholar 

  155. de Freitas GR, André C. Sensitivity of transcranial Doppler for confirming brain death: a prospective study of 270 cases. Acta Neurol Scand. 2006;113:426–32.

    Google Scholar 

  156. Walter U, Schreiber SJ, Kaps M. Doppler and duplex sonography for the diagnosis of the irreversible cessation of brain function (“brain death”): current guidelines in Germany and neighboring countries. Ultraschall Med. 2016;37:558–78.

    Article  CAS  PubMed  Google Scholar 

  157. Chang JJ, Tsivgoulis G, Katsanos AH, Malkoff MD, Alexandrov AV. Diagnostic accuracy of transcranial Doppler for brain death confirmation: systematic review and meta-analysis. AJNR Am J Neuroradiol. 2016;37:408–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Welschehold S, Geisel F, Beyer C, Reuland A, Kerz T. Contrast-enhanced transcranial Doppler ultrasonography in the diagnosis of brain death. J Neurol Neurosurg Psychiatry. 2013;84:939–40.

    Article  PubMed  Google Scholar 

  159. Llompart-Pou JA, Abadal JM, Velasco J, Homar J, Blanco C, Ayestarán JI, Pérez-Bárcena J. Contrast-enhanced transcranial color sonography in the diagnosis of cerebral circulatory arrest. Transplant Proc. 2009;41(5):1466–8.

    Article  CAS  PubMed  Google Scholar 

  160. Grossman BL, Brisman R, Wood EH. Ultrasound and the subclavian steal syndrome. Radiology. 1970;94:1–6.

    Article  CAS  PubMed  Google Scholar 

  161. von Reutern GM, Büdingen HJ. Doppler sonographic study of the vertebral artery in subclavian steal syndrome. Dtsch Med Wochenschr. 1977;102:140–1.

    Google Scholar 

  162. Reutern GM, Büdingen HJ, Freund HJ. The diagnosis of obstructions of the vertebral and subclavian arteries by means of directional Doppler sonography. Arch Psychiatr Nervenkr. 1976;222:209–22.

    Article  CAS  PubMed  Google Scholar 

  163. Klingelhöfer J, Conrad B, Benecke R, Frank B. Transcranial Doppler ultrasonography of carotid-basilar collateral circulation in subclavian steal. Stroke. 1988;19:1036–42.

    Article  PubMed  Google Scholar 

  164. Walker DW, Acker JD, Cole CA. Subclavian steal syndrome detected with duplex pulsed Doppler sonography. AJNR Am J Neuroradiol. 1982;3:615–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Seners P, Turc G, Oppenheim C, Baron JC. Incidence, causes and predictors of neurological deterioration occurring within 24 h following acute ischaemic stroke: a systematic review with pathophysiological implications. J Neurol Neurosurg Psychiatry. 2015;86(1):87–94.

    Article  PubMed  Google Scholar 

  166. Grotta JC, Welch KM, Fagan SC, et al. Clinical deterioration following improvement in the NINDS rt-PA stroke trial. Stroke. 2001;32:661–8.

    Article  CAS  PubMed  Google Scholar 

  167. Dàvalos A, Toni D, Iweins F, Lesaffre E, Bastianello S, Castillo J. Neurological deterioration in acute ischemic stroke: potential predictors and associated factors in the European Cooperative Acute Stroke Study (ECASS) I. Stroke. 1999;30:2631–6.

    Article  PubMed  Google Scholar 

  168. Alexandrov AV, Grotta JC. Arterial re-occlusion in stroke patients treated with intravenous tissue plasminogen activator. Neurology. 2002;59:862–7.

    Article  CAS  PubMed  Google Scholar 

  169. Alexandrov AV, Nguyen HT, Rubiera M, et al. Prevalence and risk factors associated with reversed Robin Hood syndrome in acute ischemic stroke. Stroke. 2009;40:2738–42.

    Article  PubMed  Google Scholar 

  170. Barlinn K, Alexandrov AV. Sleep-disordered breathing and arterial blood flow steal represent linked therapeutic targets in cerebral ischaemia. Int J Stroke. 2011;6:40–1.

    Article  PubMed  Google Scholar 

  171. Ringelstein EB, Sievers C, Ecker S, Schneider PA, Otis SM. Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke. 1988;19:963–9.

    Article  CAS  PubMed  Google Scholar 

  172. Palazzo P, Balucani C, Barlinn K, et al. Association of reversed Robin Hood syndrome with risk of stroke recurrence. Neurology. 2010;75:2003–8.

    Article  CAS  PubMed  Google Scholar 

  173. Tsivgoulis G, Zhang Y, Alexandrov AW, et al. Safety and tolerability of early noninvasive ventilatory correction using bilevel positive airway pressure in acute ischemic stroke. Stroke. 2011;42:1030–4.

    Article  PubMed  Google Scholar 

  174. Kepplinger J, Barlinn K, Kolieskova S, Shahripour RB, Pallesen LP, Schrempf W, et al. Reversal of the neurological deficit in acute stroke with the signal of efficacy trial of auto-BPAP to limit damage from suspected sleep apnea (reverse-STEAL): study protocol for a randomized controlled trial. Trials. 2013;14:252.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Barlinn K, Jakubicek S, Siepmann T, et al. Autotitrating Bilevel Positive Airway Pressure in Large Vessel Steno-Occlusive Stroke Patients With Suspected Sleep Apnea: A Multicenter Randomized Controlled Study. Front Neurol. 2021;12:667494.

    Google Scholar 

Download references

Acknowledgments

Dr. Marc Ribo was the original first author of this chapter in the second edition of the book. Subsequent editions were modified from the second edition of the book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Barlinn .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barlinn, K., Alexandrov, A.V. (2022). Transcranial Doppler Sonography. In: AbuRahma, A.F., Perler, B.A. (eds) Noninvasive Vascular Diagnosis. Springer, Cham. https://doi.org/10.1007/978-3-030-60626-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60626-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60625-1

  • Online ISBN: 978-3-030-60626-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics