Skip to main content

Understanding Pearl Millet Blast Caused by Magnaporthe grisea and Strategies for Its Management

  • Chapter
  • First Online:
Blast Disease of Cereal Crops

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Pearl millet blast, caused by Magnaporthe grisea, has emerged at an alarming rate in the recent past in India, and causes potential loss in both forage and grain production. The commercialization of blast-susceptible hybrids, and conducive environmental conditions, has led to the widespread occurrence of the disease across pearl millet-producing areas. The disease is characterized by water-soaked lesions with grayish center on foliar parts which later turn into brown lesion surrounded by chlorotic halo. The disease is mostly favored under warm and humid conditions of Rajasthan, Gujarat, Maharashtra, Madhya Pradesh, Uttar Pradesh, and Haryana where incidence of the disease is noticed up to 90%. The heterothallic nature of M. grisea/oryzae ensures high level of pathogenic variations in the natural populations of the pathogen. The disease can be effectively managed through host plant resistance and use of fungicides, and by integration of cultural practices, host plant resistance, need-based chemical application, biological control, and use of botanicals. This chapter describes symptoms, host range, current status, variability in the pathogen, mechanism of pathogenicity and epidemiology of pearl millet blast, and available options for the disease management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi K, Hamer JE. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell. 1998;10(8):1361–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agrios GN. Control of plant diseases in plant pathology. London: Academic; 1997. p. 200–16.

    Google Scholar 

  • Ahn IP, Kim S, Kang S, Suh SC, Lee YH. Rice defense mechanisms against Cochliobolus miyabeanus and Magnaporthe grisea are distinct. Phytopathology. 2005;95(11):1248–55.

    CAS  PubMed  Google Scholar 

  • Amadioha AC. Controlling rice blast in vitro and in vivo with extracts of Azadirachta indica. Crop Prot. 2000;19(5):287–90.

    Google Scholar 

  • Bao-Hua W, Guo-Dong L, Hai-Ming L, Yan L, Zong-Hua W. Assessment of Magnaporthe grisea mating type by PCR. Chin J Agric Biotechnol. 2005;2(1):1–5.

    Google Scholar 

  • Barr ME. Magnaporthe, Telimenella, and Hyponectria (Physosporellaceae). Mycologia. 1977;69(5):952–66.

    Google Scholar 

  • Bohnert HU, Fudal I, Dioh W, Tharreau D, Notteghem JL, Lebrun MH. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell. 2004;16(9):2499–513.

    PubMed  PubMed Central  Google Scholar 

  • Borges-Walmsley MI, Walmsley AR. Triggers and targets of cAMP signalling-response. Trends Microbiol. 2000;8(7):302–3.

    CAS  PubMed  Google Scholar 

  • Bourett TM, Howard RJ. In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can J Bot. 1990;68(2):329–42.

    Google Scholar 

  • Brindha VP, Viji G, Gnanamanickam SS. Mating type distribution, fertility and pathogenicity of rice isolates of Magnaporthe grisea in four rice growing regions of India. Indian Phytopathol. 1999;52(1):28–34.

    Google Scholar 

  • Buckley TA, Allen BF. Notes on current investigations. Malays J Sustain Agric. 1951;34:133–41.

    Google Scholar 

  • Cai J, Wang L, Pan Q. Mating type and fertility of the rice blast fungus population derived from Guangdong province, China. Zhongguo Shuidao Kexue. 2005;38(4):837–42.

    Google Scholar 

  • Cannon PF. The newly recognized family Magnaporthaceae and its interrelationships. Systema Ascomycetum. 1994;13(1):25–42.

    Google Scholar 

  • Cavara F. Contributzioneallamicologialombarda. Atti Instituto Botanico Universita Laboratorio Crittogamico Pavia Ser. 1892;2:207–92.

    Google Scholar 

  • Chandra Nayak S, Srivastava RK, Uday Shankar AC, Lavanya SM, Prakash G, Bishnoi HR, Kadvani DL, Singh OV, Niranjana SR, Prakash HS, Tara Satyavathi C. Magnaporthe: blast of pearl millet in India—present status and future prospects. All India Coordinated Research Project on Pearl Millet (Indian Council of Agricultural Research), Mandore, Jodhpur-342304. 2017. 51 p.

    Google Scholar 

  • Choi W, Dean RA. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell. 1997;9(11):1973–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Consolo VF, Cordo CA, Salerno GL. Mating-type distribution and fertility status in Magnaporthe grisea populations from Argentina. Mycopathologia. 2005;160(4):285–90.

    CAS  PubMed  Google Scholar 

  • Coppin E, Debuchy R, Arnaise S, Picard M. Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev. 1997;61(4):411–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couch BC, Kohn LM. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia. 2002;94(4):683–93.

    CAS  PubMed  Google Scholar 

  • D’Souza CA, Heitman J. Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev. 2001;25(3):349–64.

    PubMed  Google Scholar 

  • de Jong JC, McCormack BJ, Smirnoff N, Talbot NJ. Glycerol generates turgor in rice blast. Nature. 1997;389:244–5.

    Google Scholar 

  • Dean RA. Signal pathways and appressorium morphogenesis. Annu Rev Phytopathol. 1997;35(1):211–34.

    CAS  PubMed  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005;434(7036):980–6.

    CAS  PubMed  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell. 1999;11(10):2013–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong-mei L, Hongli J, Wende L. Studies on mating type of Magnaporthe grisea in Sichuan Province of China. J Sichuan Agric Univ. 2005;23:168–74.

    Google Scholar 

  • Ebbole DJ. Magnaporthe as a model for understanding host-pathogen interactions. Annu Rev Phytopathol. 2007;45:437–56.

    CAS  PubMed  Google Scholar 

  • Emechebe, AM. Some Aspects of Crop Diseases in Uganda. Makerere University Printery, Uganda. 1975.

    Google Scholar 

  • Flaishman MA, Kolattukudy PE. Timing of fungal invasion using host’s ripening hormone as a signal. Proc Natl Acad Sci U S A. 1994;91(14):6579–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frankel OH, Brown AH. Plant genetic resources today: a critical appraisal. In: Holden JHW, Williams JT, editors. Crop genetic resources: conservation & evaluation. 1984.

    Google Scholar 

  • Gilbert RD, Johnson AM, Dean RA. Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol Mol Plant Pathol. 1996;48(5):335–46.

    CAS  Google Scholar 

  • Gupta SK, Sharma R, Rai KN, Thakur RP. Inheritance of foliar blast resistance in pearl millet (Pennisetum glaucum). Plant Breed. 2012;131(1):217–9.

    Google Scholar 

  • Hanna WW, Wells HD. Inheritance of Pyricularia leaf spot resistance in pearl millet. J Hered. 1989;80(2):145–7.

    Google Scholar 

  • Hanna WW, Wells HD, Burton GW, Hill GM, Monson WG. Registration of ‘Tifleaf 2’ pearl millet. Crop Sci. 1988;28(6):1023.

    Google Scholar 

  • Hebert TT. The perfect stage of Pyricularia grisea. Phytopathology. 1971;61(1):83–7.

    Google Scholar 

  • Hebert TT. Production of the perfect stage of Pyricularia from rice and other hosts. Serie CE (CIAT) Centro Internacional de Agricultura Tropical. No. 9. 1975.

    Google Scholar 

  • Howard RJ, Valent B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol. 1996;50(1):491–512.

    CAS  PubMed  Google Scholar 

  • Inukai T, Vales MI, Hori K, Sato K, Hayes PM. RMo 1 confers blast resistance in barley and is located within the complex of resistance genes containing Mla, a powdery mildew resistance gene. Mol Plant-Microbe Interact. 2006;19(9):1034–41.

    CAS  PubMed  Google Scholar 

  • Joosten MH, Cozijnsen TJ, De Wit PJ. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature. 1994;367(6461):384–6.

    CAS  PubMed  Google Scholar 

  • Joshi HD, Gohel NM. Management of blast [Pyricularia grisea (Cooke) Sacc.] disease of pearl millet through fungicides. Bioscan. 2015;10(4):1855–8.

    Google Scholar 

  • Kang S, Lee YH. Population structure and race variation of the rice blast fungus. Plant Pathol J. 2000;16:1–8.

    Google Scholar 

  • Kang S, Chumley FG, Valent B. Isolation of the mating-type genes of the phytopathogenic fungus Magnaporthe grisea using genomic subtraction. Genetics. 1994;138(2):289–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kankanala P, Czymmek K, Valent B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell. 2007;19(2):706–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato H. Epidemiology of rice blast disease. J Plant Prot Res. 1974;7:1–20.

    Google Scholar 

  • Kato H. Rice blast disease. Pestic Outlook. 2001;12(1):23–5.

    CAS  Google Scholar 

  • Kato H, Yamaguchi T. The perfect state of Pyricularia oryzae Cav. from rice plants in culture. Jpn J Phytopathol. 1982;48(5):607–12.

    Google Scholar 

  • Kato H, Mayama S, Sekine R, Kanazawa E, Izutani Y, Urashima AS, Kunoh H. Microconidium formation in Magnaporthe grisea. Jpn J Phytopathol. 1994;60(2):175–85.

    Google Scholar 

  • Kaurav A, Pandya R, Singh B. Performance of botanicals and fungicides against blast of pearl millet (Pennisetum glaucum). Ann Plant Soil Res. 2018;20(3):258–62.

    Google Scholar 

  • Kim CK, Kim CH. The rice leaf blast simulation model EPIBLAST. In: Systems approaches for agricultural development. Dordrecht: Springer; 1993. p. 309–21.

    Google Scholar 

  • Kiran Babu T, Sharma R, Upadhyaya HD, Reddy PN, Senthilvel S, Sarma NDRK, Thakur RP. Evaluation of genetic diversity in Magnaporthe grisea populations adapted to finger millet using Simple Sequence Repeats (SSRs). Physiol Mol Plant Pathol. 2013;84:10–8.

    CAS  Google Scholar 

  • Klaubauf S, Tharreau D, Fournier E, Groenewald JZ, Crous PW, De Vries RP, Lebrun MH. Resolving the polyphyletic nature of Pyricularia (Pyriculariaceae). Stud Mycol. 2014;79:85–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotasthane AS, Kumar J, Singh US, Zeigler RS. Genetics of fertility and mating type in Magnaporthe grisea. In: Rice blast: interaction with rice and control. Dordrecht: Springer; 2004. p. 261–70.

    Google Scholar 

  • Kumar J, Nelson RJ, Zeigler RS. Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas. Genetics. 1999;152(3):971–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamey HA. Pyricularia oryzae on rice seed in the United States. Plant Dis Rep. 1970;54(11):931–5.

    Google Scholar 

  • Lanoiselet V, Cother E. Plant health Australia diagnostic protocol for Magnaporthe grisea. 2005. http://www.padil.gov.au/pbt | Rice Blast—Magnaporthe grisea.

  • Lavanya B, Gnanamanickam SS. Molecular tools for characterization of rice blast pathogen (Magnaporthe grisea) population and molecular marker-assisted breeding for disease resistance. Curr Sci. 2000;78:248–57.

    Google Scholar 

  • Lee YH, Dean RA. Stage-specific gene expression during appressorium formation of Magnaporthe grisea. Exp Mycol. 1993a;17(3):215–22.

    CAS  Google Scholar 

  • Lee YH, Dean RA. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell. 1993b;5(6):693–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Lee YH. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol Cells. 1998;8(6):698–704. Springer Science & Business Media BV.

    CAS  PubMed  Google Scholar 

  • Lee N, D’Souza CA, Kronstad JW. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu Rev Phytopathol. 2003;41(1):399–427.

    CAS  PubMed  Google Scholar 

  • Leslie JF, Klein KK. Female fertility and mating type effects on effective population size and evolution in filamentous fungi. Genetics. 1996;144(2):557–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lubadde G, Tongoona P, Derera J, Sibiya J. Major pearl millet diseases and their effects on on-farm grain yield in Uganda. Afr J Agric Res. 2014;9(39):2911–8.

    Google Scholar 

  • Lukose CM, Kadvani DL, Dangaria CJ. Efficacy of fungicides in controlling blast disease of pearl millet. Indian Phytopathol. 2011;60(1):137–8.

    Google Scholar 

  • Mackill AO, Bonman JM. New hosts of Pyricularia oryzae. Plant Dis. 1986;70(2):125–7.

    Google Scholar 

  • Mahesh M, Malatesha L, Venkataravana P. In vitro evaluation of fungicides and bioagents for the management of pearl millet blast caused by Pyricularia grisea (Cooke) Sacc. Int J Curr Microbiol Appl Sci. 2019;8(6):1422–9.

    CAS  Google Scholar 

  • Manning K, Pelling R, Higham T, Schwenniger JL, Fuller DQ. 4500-year old domesticated pearl millet (Pennisetum glaucum) from the Tilemsi Valley, Mali: new insights into an alternative cereal domestication pathway. J Archaeol Sci. 2011;38(2):312–22.

    Google Scholar 

  • Marley PS, Diourte M, Neya A, Nutsugah SK, Sereme P, Katile SO, Hess DE, Mbaye DF, Ngoko Z. Sorghum and pearl millet diseases in West and Central Africa. Sorghum Millets Dis. 2002;419–26.

    Google Scholar 

  • Mehta PR, Singh B, Mathur SC. A new leaf spot disease of Bajra (Pennisetum typhoides Stapf and Hubbard) caused by a species of Pyricularia. Indian Phytopathol. 1953;5(2):142–3.

    Google Scholar 

  • Mekwatanakarn P, Kositratana W, Phromraksa T, Zeigler RS. Sexually fertile Magnaporthe grisea rice pathogens in Thailand. Plant Dis. 1999;83(10):939–43.

    PubMed  Google Scholar 

  • Munch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising HB. The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol. 2008;165(1):41–51.

    PubMed  Google Scholar 

  • Murakami J, Tosa Y, Kataoka T, Tomita R, Kawasaki J, Chuma I, Sesumi Y, Kusaba M, Nakayashiki H, Mayama S. Analysis of host species specificity of Magnaporthe grisea toward wheat using a genetic cross between isolates from wheat and foxtail millet. Phytopathology. 2000;90(10):1060–7.

    CAS  PubMed  Google Scholar 

  • Nagaraja A, Jagadish PS, Ashok EG, Gowda KK. Avoidance of finger millet blast by ideal sowing time and assessment of varietal performance under rain fed production situations in Karnataka. J Mycol Pathol Res. 2007;45(2):237–40.

    Google Scholar 

  • Nakayama H, Nagamine T, Hayashi N. Genetic variation of blast resistance in foxtail millet (Setaria italica (L.) P. Beauv.) and its geographic distribution. Genet Resour Crop Evol. 2005;52(7):863–8.

    Google Scholar 

  • Nishikado Y. Studies on rice blast disease. Bull. Bureau. Agric., Ministry of Agriculture and Forestry, Japan. 1926;15(1):211.

    Google Scholar 

  • Nottéghem JL, Silue D. Distribution of the mating type alleles in Magnaporthe grisea populations pathogenic on rice. Phytopathology. 1992;82(4):421–4.

    Google Scholar 

  • Oh Y, Donofrio N, Pan H, Coughlan S, Brown DE, Meng S, Mitchell T, Dean RA. Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae. Genome Biol. 2008;9(5):85.

    Google Scholar 

  • Ou SH. Pathogen variability and host resistance in rice blast disease. Annu Rev Phytopathol. 1980;18(1):167–87.

    Google Scholar 

  • Ou SH. Rice diseases. Kew, Surrey: Commonwealth Mycological Institute; 1985.

    Google Scholar 

  • Perfect SE, Green JR. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol Plant Pathol. 2001;2(2):101–8.

    CAS  PubMed  Google Scholar 

  • Perrott RF, Chakraborty S. Pyricularia grisea causes blight of buffel grass (Cenchrus ciliaris) in Queensland, Australia. Trop Grassl. 1999;33(4):201–6.

    Google Scholar 

  • Prabhu AS, Filippi MC, Castro N. Pathogenic variation among isolates of Pyricularia oryzae affecting rice, wheat, and grasses in Brazil. Int J Pest Manag. 1992;38(4):367–71.

    Google Scholar 

  • Prakash G, Kumar A, Sheoran N, Aggarwal R, Satyavathi CT, Chikara SK, Ghosh A, Jain RK. First draft genome sequence of a pearl millet blast pathogen, Magnaporthe grisea Strain PMgDl, obtained using PacBio Single-Molecule Real-Time and Illumina NextSeq 500 Sequencing. Microbiol Resour Announc. 2019;8(20):e01499–18.

    PubMed  PubMed Central  Google Scholar 

  • Priyadarshini VB, Viji G, Gnanamanickam SS. Mating type distribution, fertility and pathogenicity of rice isolates of Magnaporthe grisea in four rice growing regions of India. Indian Phytopathol. 1999;52(1):28–34.

    Google Scholar 

  • Rai KN, Khairwal IS, Dangaria CJ, Singh AK, Rao AS. Seed parent breeding efficiency of three diverse cytoplasmic-nuclear male-sterility systems in pearl millet. Euphytica. 2009;165(3):495–507.

    Google Scholar 

  • Roopadevi, Patil PV. In-vitro bioassay of fungicides, bioagents, botanicals against Pyricularia grisea (Cooke) Sacc.-Incitant of Pearl Millet Blast. Int J Pure Appl Biosci. 2017;5(4):1457–63.

    Google Scholar 

  • Rossman AY, Howard RJ, Valent B. Pyricularia grisea the correct name for the rice blast disease fungus. Mycologia. 1990;82(4):509–12.

    Google Scholar 

  • Saccardo PA. Fungorum extra-europaeorum Pugillus. Michelia. 1880;2(6):136–49.

    Google Scholar 

  • Saikia UN, Puzari KC, Dutta PK. Pennisetum pedicellatum, a new host of Pyricularia grisea. Indian J Mycol Plant Pathol. 1982;12(2):237.

    Google Scholar 

  • Sawada K. Blast of rice plants and its relation to the infective crops and weeds, with the description of five species of Dactylaria. Special Bull Taiwan Agric Exp Stat. 1917;16:1–78.

    Google Scholar 

  • Sharma R, Upadhyaya HD, Manjunatha SV, Rai KN, Gupta SK, Thakur RP. Pathogenic variation in the pearl millet blast pathogen Magnaporthe grisea and identification of resistance to diverse pathotypes. Plant Dis. 2013;97(2):189–95.

    PubMed  Google Scholar 

  • Sharma R, Gate VL, Madhavan S. Evaluation of fungicides for the management of pearl millet [Pennisetum glaucum (L.)] blast caused by Magnaporthe grisea. Crop Prot. 2018;112:209–13.

    CAS  Google Scholar 

  • Sharma R, Gupta, SK, Sharma S, Govindaraj M, Srivastava RK, Deshpande SP, Gupta R. Utilizing host plant resistance to manage blast: an emerging threat to dryland cereals. Lead paper presented at IPPC2019, 10–14 November, Hyderabad, India. 2019. p. 201.

    Google Scholar 

  • Sharma R, Sharma S, Gate VL. Tapping Pennisetum violaceum, a wild relative of pearl millet (Pennisetum glaucum), for resistance to blast (caused by Magnaporthe grisea) and rust (caused by Puccinia substriata var. indica). Plant Dis. 2020;104:1487–91. https://doi.org/10.1094/PDIS-08-19-1602-RE.

    Article  PubMed  Google Scholar 

  • Shaw BD, Kuo K, Hoch HC. Germination and appressorium development of Phyllosticta ampelicida pycnidiospores. Mycologia. 1998;90(2):258–68.

    Google Scholar 

  • Shetty HS, Niranjan Raj S, Sudisha J, Thakur RP, Rai KN, Khairwal IS, Negi S, Mahala RS. Pyricularia blast of pearl millet in India. Crop Care. 2009;35:53–8.

    Google Scholar 

  • Shirai M. Notes on plants collected in suruga, Totomi, yamato and kii. Bot Mag Tokyo. 1896;10:111–4.

    Google Scholar 

  • Silue D, Notteghem JL. Production of perithecia of Magnaporthe grisea on rice plants. Mycol Res. 1990;94(8):1151–2.

    Google Scholar 

  • Silva GB, Prabhu AS, Filippi MC, Trindade MG, Araújo LG, Zambolim L. Genetic and phenotypic diversity of Magnaporthe oryzae from leaves and panicles of rice in commercial fields in the State of Goias, Brazil. Trop Plant Pathol. 2009;34(2):77–86.

    Google Scholar 

  • Singh DS, Pavgi MS. Perpetuation of Pyricularia penniseti causing brown leaf spot of bajra. Indian Phytopathol. 1977;30(2):242–4.

    Google Scholar 

  • Singh S, Sharma R, Pushpavathi B, Gupta SK, Durgarani CV, Raj C. Inheritance and allelic relationship among gene (s) for blast resistance in pearl millet [Pennisetum glaucum (L.) R. Br.]. Plant Breed. 2018;137(4):573–84.

    CAS  Google Scholar 

  • Skamnioti P, Gurr SJ. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol. 2009;27(3):141–50.

    CAS  PubMed  Google Scholar 

  • Sommerhalder RJ, McDonald BA, Zhan J. The frequencies and spatial distribution of mating types in Stagonospora nodorum are consistent with recurring sexual reproduction. Phytopathology. 2006;96(3):234–9.

    CAS  PubMed  Google Scholar 

  • Staples RC, Laccetti L, Yaniv Z. Appressorium formation and nuclear division in Colletotrichum truncatum. Arch Microbiol. 1976;109(1–2):75–84.

    CAS  Google Scholar 

  • Steiner-Lange S, Fischer A, Boettcher A, Rouhara I, Liedgens H, Schmelzer E, Knogge W. Differential defense reactions in leaf tissues of barley in response to infection by Rhynchosporium secalis and to treatment with a fungal avirulence gene product. Mol Plant-Microbe Interact. 2003;16(10):893–902.

    CAS  PubMed  Google Scholar 

  • Suh JP, Roh JH, Cho YC, Han SS, Kim YG, Jena KK. The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines. Phytopathology. 2009;99(3):243–50.

    CAS  PubMed  Google Scholar 

  • Taguchi Y, Hyakumachi M, Horinouchi H, Kawane F. Biological control of rice blast disease by Bacillus subtilis IK-1080. Jpn J Phytopathol. 2003;69(2):85–93.

    Google Scholar 

  • Takan JP, Chipili J, Muthumeenakshi S, Talbot NJ, Manyasa EO, Bandyopadhyay R, Sere Y, Nutsugah SK, Talhinhas P, Hossain M, Brown AE. Magnaporthe oryzae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction. Mol Biotechnol. 2012;50(2):145–58.

    CAS  PubMed  Google Scholar 

  • Talbot NJ. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol. 2003;57(1):177–202.

    CAS  PubMed  Google Scholar 

  • TeBeest DO, Guerber C, Ditmore M. Rice blast. The plant health instructor. 2007. https://doi.org/10.1094/PHI-I-2007-0313-07.

  • Teng PS. Epidemiological basis for blast management. In: Zeigler RS, Leong SA, Teng PS, editors. Rice blast disease. Wallingford: CAB International and IRRI; 1994. p. 409–33.

    Google Scholar 

  • Thakur RP, Sharma R, Rai KN, Gupta SK, Rao VP. Screening techniques and resistance sources for foliar blast in pearl millet. J SAT Agric Res. 2009;7:1–5.

    Google Scholar 

  • Thakur RP, Sharma R, Rao VP. Screening techniques for pearl millet diseases. Information Bulletin No. 89. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, Telangana, India. 2011. p. 48.

    Google Scholar 

  • Thieringer R, Kunau WH. The beta-oxidation system in catalase-free microbodies of the filamentous fungus Neurospora crassa. Purification of a multifunctional protein possessing 2-enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxyacyl-CoA epimerase activities. J Biol Chem. 1991;266(20):13110–7.

    CAS  PubMed  Google Scholar 

  • Thines E, Weber RW, Talbot NJ. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell. 2000;12(9):1703–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timper P, Wilson JP, Johnson AW, Hanna WW. Evaluation of pearl millet grain hybrids for resistance to Meloidogyne spp. and leaf blight caused by Pyricularia grisea. Plant Dis. 2002;86(8):909–14.

    CAS  PubMed  Google Scholar 

  • Tredway LP, Stevenson KL, Burpee LL. Mating type distribution and fertility status in Magnaporthe grisea populations from turf grasses in Georgia. Plant Dis. 2003;87(4):435–41.

    CAS  PubMed  Google Scholar 

  • Ueyama A, Tsuda M. Formation of the perfect state in culture of Pyricularia sp. from some graminaceous plants Preliminary report. Trans Mycol Soc Japan. 1975.

    Google Scholar 

  • Upadhyaya HD, Ortiz R. A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet. 2001;102(8):1292–8.

    Google Scholar 

  • Urak RZ, Douhan GW, Wong F. Mating-type distribution of the rice blast pathogen Pyricularia grisea in California. UCR Undergrad Res J. 2008;2:61–5.

    Google Scholar 

  • Werder J, Manzo SK. Pearl millet diseases in Western Africa. Sorghum and millets diseases: a second world review. Patancheru: ICRISAT 109-4; 1992.

    Google Scholar 

  • Wilson JP, Gates RN. Forage yield losses in hybrid pearl millet due to leaf blight caused primarily by Pyricularia grisea. Phytopathology. 1993;83(7):739–44.

    Google Scholar 

  • Wilson JP, Hanna WW. Disease resistance in wild Pennisetum species. Plant Dis. 1992a;76(11):1171–5.

    Google Scholar 

  • Wilson JP, Hanna WW. Effects of gene and cytoplasm substitutions in pearl millet on leaf blight epidemics and infection by Pyricularia grisea. Phytopathology. 1992b;82(8):839–42.

    Google Scholar 

  • Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol. 2009;7(3):185–95.

    CAS  PubMed  Google Scholar 

  • Wilson JP, Wells HD, Burton GW. Inheritance of resistance to Pyricularia grisea in pearl millet accessions from Burkina Faso and inbred Tift 85DB. J Hered. 1989;80(6):499–501.

    Google Scholar 

  • Xu JR. MAP kinases in fungal pathogens. Fungal Genet Biol. 2000;31(3):137–52.

    CAS  PubMed  Google Scholar 

  • Xu JR, Hamer JE. Assessment of Magnaporthe grisea mating type by spore PCR. Fungal Genet Rep. 1995;42(1):80.

    Google Scholar 

  • Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 1996;10(21):2696–706.

    CAS  PubMed  Google Scholar 

  • Yaegashi H. On the sexuality of blast fungi, Pyricularia spp. Jpn J Phytopathol. 1977;43(4):432–9.

    Google Scholar 

  • Yaegashi H, Hebert TT. Perithecial development and nuclear behavior in Pyricularia. Phytopathology. 1976;66:122–6.

    Google Scholar 

  • Yaegashi H, Yamada M. Pathogenic race and mating type of Pyricularia oryzae from Soviet Union, China, Nepal, Thailand, Indonesia and Colombia. Jpn J Phytopathol. 1986;52(2):225–34.

    Google Scholar 

  • Yella Goud T. Epidemiology, virulence and molecular diversity in blast [Magnaporthe grisea (Hebert) Barr.] of pearl millet [Pennisetum glaucum (L.) R. Br.] and resistance in the host to diverse pathotypes. Doctoral dissertation, Professor Jayashankar Telangana State Agricultural University, Hyderabad. 2015.

    Google Scholar 

  • Yella Goud T, Sharma R, Gupta SK, Devi GU, Gate VL, Boratkar M. Evaluation of designated hybrid seed parents of pearl millet for blast resistance. Indian J Plant Prot. 2016;44(1):83–7.

    Google Scholar 

  • Yoder OC, Valent B, Chumley F. Genetic nomenclature and practice for plant pathogenic fungi. Phytopathology. 1986;76(3):383–5.

    Google Scholar 

  • Zarrinnia V, Nikkhah MJ, Zadeh HR, Bitarafan F, Sedaghatfar E. Fertility assessment and mating type analysis reveal the absence of sexual stage in Magnaporthe oryzae populations in Iran. Sci Series Data Rep. 2012;4:123–32.

    Google Scholar 

  • Zeigler RS. Recombination in Magnaporthe grisea. Annu Rev Phytopathol. 1998;36(1):249–75.

    CAS  PubMed  Google Scholar 

  • Zeng J, Feng S, Cai J, Wang L, Lin F, Pan Q. Distribution of mating type and sexual status in Chinese rice blast populations. Plant Dis. 2009;93(3):238–42.

    PubMed  Google Scholar 

  • Zheng Y, Zhang G, Lin F, Wang Z, Jin G, Yang L, Wang Y, Chen X, Xu Z, Zhao X, Wang H. Development of microsatellite markers and construction of genetic map in rice blast pathogen Magnaporthe grisea. Fungal Genet Biol. 2008;45(10):1340–7.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Sharma, R., Chandra Nayaka, S., Tara Satyavathi, C., Raj, C. (2021). Understanding Pearl Millet Blast Caused by Magnaporthe grisea and Strategies for Its Management. In: Nayaka, S.C., Hosahatti, R., Prakash, G., Satyavathi, C.T., Sharma, R. (eds) Blast Disease of Cereal Crops. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-60585-8_11

Download citation

Publish with us

Policies and ethics