Skip to main content

Microconidia: Understanding Its Role in the Fungus Magnaporthe oryzae Inciting Rice Blast Disease

  • Chapter
  • First Online:
Blast Disease of Cereal Crops

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Adaptation and survival are the key fundamentals for any microorganism. The rice blast fungus Magnaporthe oryzae is not exceptional for that and it is the model pathogen for host-pathogen interaction studies. As of now, the macroconidia of this fungus and its pathogenesis, infection process and disease establishment have been studied extensively. Other than macroconidia, the fungus is also able to produce uninucleate microconidia under artificial media as well as inside the plant tissue. Microconidia can germinate and infect the wounded rice plants which lead to necrotic lesions. Apart from that, it also infects the particular stage of the host that is spikelet stage of barley and Brachypodium heads with wounding indicate that microconidia help in disease development at a particular stage of the host. Therefore, microconidia may play an important role in rice blast disease establishment especially for panicle blast development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Barr ME. Magnaporthe, Telimenella, and Hyponeclaria (Physosporellaceae). Mycologia. 1977;69:952.

    Article  Google Scholar 

  • Chuma I, Shinogi T, Hosogi N, Ikeda K, Nakayashiki H, Park P, Tosa Y. Cytological characteristics of microconidia of Magnaporthe oryzae. J Genet Plant Pathol. 2009;75:353–8.

    Article  Google Scholar 

  • Cole GT, Samson RA. Patterns of development in conidial fungi. London: Pitman; 1979. p. 54–72.

    Google Scholar 

  • Consolo VF, Cordo CA, Salerno GL. Mating type distribution and fertility status in Magnaporthe grisea populations from Argentina. Mycopathologia. 2005;160:285–90.

    Article  CAS  Google Scholar 

  • Dufresne M, Osbourn AE. Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fungus. Mol Plant Microbe Interact. 2001;14(3):300–7.

    Article  CAS  Google Scholar 

  • Esser K. Podospora anserina. In: King RC, editor. Handbook of genetics, vol. 1. New York: Plenum; 1974. p. 531–51.

    Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94. https://doi.org/10.1038/nature10947.

    Article  CAS  PubMed  Google Scholar 

  • Fukumori Y, Nakajima M, Akutsu K. Microconidia act the role as spermatia in the sexual reproduction of Botrytis cinerea. J Gen Plant Pathol. 2004;70:256–60.

    Article  Google Scholar 

  • Gupta VK, Kapoor AS. Diseases of field crops. New Delhi: Indus Publishing House; 2002.

    Google Scholar 

  • Hebert TT. The perfect stage of Pyricularia grisea. Phytopathology. 1971;61(1):83–7.

    Article  Google Scholar 

  • Helliwell EE, Wang Q, Yang Y. Transgenic rice with inducible ethylene production exhibits broad spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol J. 2013;11:33–42.

    Article  CAS  Google Scholar 

  • Howard RJ, Valent B. Breaking and entering–host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol. 1996;50:491–512.

    Article  CAS  Google Scholar 

  • Kato H, Yamaguchi T. The perfect state of Pyricularia oryzae cav. from rice plants in culture. Ann Phytopathol Soc Jpn. 1982;48:607–12.

    Article  Google Scholar 

  • Kato H, Mayama S, Sekine R, Kanazawa E, Izutani Y, Urashima AS, Kuhoh H. Microconidium formation in Magnaporthe grisea. Annu Phytopathol Soc Jpn. 1994;60:175–85.

    Article  Google Scholar 

  • Katsantonis D, Kadoglidou K, Dramalis C, Puigdollers P. Rice blast forecasting models and their practical value: a review. Phytopathol Mediterr. 2017;56(2):187–216.

    CAS  Google Scholar 

  • Kumar J, Nelson RJ, Zeigler RS. Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas. Genetics. 1999;152:971–84.

    Article  CAS  Google Scholar 

  • Kumar MP, Gowda DS, Moudgal R, Kumar NK, Gowda KP, Vishwanath K. Impact of fungicides on rice production in India. Fungicides-show cases of integrated plant disease management from around the world. London: IntechOpen; 2013.

    Google Scholar 

  • Landschoot PJ, Jackson N. Magnaporthe poae spnov. a hyphopodiate fungus with a Phialophora anamorph from grass roots in the USA. Mycol Res. 1989;93:59–62.

    Article  Google Scholar 

  • Le MT, Arie T, Teraoka T. Population dynamics and pathogenic races of rice blast fungus, Magnaporthe oryzae in the Mekong Delta in Vietnam. J Gen Plant Pathol. 2010;76:177–82.

    Article  Google Scholar 

  • Li C, Li J, Sheng R, Fujita Y. Cross-fertility of rice blast fungus Pyricularia oryzae. Xi Nan Nong Ye Xue Bao. 1992;5:53–8.

    CAS  Google Scholar 

  • Li C, Chen Q, Chen Z, Luo C, Hayashi N, Iso K. Distribution of the matting type in Magnaporthe grisea population pathogenic to rice in Yunnan Province. Sci Agric Sin. 1996;29:60–4.

    Google Scholar 

  • Lowry RJ, Durkee TL, Sussman AS. Ultra structural studies of microconidium formation in Neurospora crassa. J Bacteriol. 1967;94:1757–63.

    Article  CAS  Google Scholar 

  • Maheshwari R. Microconidia of Neurospora crassa. Fungal Genet Biol. 1999;26:1–18.

    Article  CAS  Google Scholar 

  • Marcel S, Sawers R, Oakeley E, Angliker H, Paszkowski U. Tissue adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell. 2010;22(9):3177–87.

    Article  CAS  Google Scholar 

  • Marciel JLN, Ceresini PC, Castroagudin VL, Zala M, Kema GH, McDonald BA. Population structure and pathotype diversity of the wheat blast pathogen, Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology. 2014;104:95–107.

    Article  Google Scholar 

  • Mekwatanakarn P, Kositratana W, Phromraksa T, Zeigler RS. Sexually fertile Magnaporthe grisea rice pathogens in Thailand. Plant Dis. 1999;83:939–43.

    Article  Google Scholar 

  • Nalley L, Tsiboe F, Durand-Morat A, Shew A, Thoma G. Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States. PLoS One. 2016;11(12):e0167295.

    Article  Google Scholar 

  • Rathour R, Singh BM, Sharma TR. Sexual fertility in Magnaporthe grisea isolates from rice, finger millet and crabgrass in Himachal Pradesh. J Mycol Plant Pathol. 2004;34:230–2.

    Google Scholar 

  • Ribot C, Hirsch J, Balzergue S, Tharreau D, Nottéghem JL, Lebrun MH, Morel JB. Susceptibility of rice to the blast fungus, Magnaporthe grisea. J Plant Physiol. 2008;165(1):114–24.

    Article  CAS  Google Scholar 

  • Saleh D, Xu P, Shen Y, Li C, Adreit H, Milazzo J, Ravigne V, Bazin E, Notteghem JL, Fournier E, Tharreau D. Sex at the origin: an Asian population of the rice blast fungus Magnaporthe oryzae reproduces sexually. Mol Ecol. 2012;21:1330–44.

    Article  Google Scholar 

  • Saleh D, Milazzo J, Adreit H, Fournier E, Tharreau D. South-East Asia is the center of origin, diversity and dispersion of rice blast fungus, Magnaporthe oryzae. New Phytol. 2014;201:1440–56.

    Article  Google Scholar 

  • Sesma A, Osbourn AE. The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature. 2004;431(7008):582–6.

    Article  CAS  Google Scholar 

  • Singh RS. Plant diseases. Med-Tech International Publishers; 2017. p. 485–6.

    Google Scholar 

  • Skamnioti P, Gurr SJ. Against the grain: safeguarding rice from blast disease. Trends Biotechnol. 2009;27:141–50.

    Article  CAS  Google Scholar 

  • Takan JP, Chipili J, Muthumeenakshi S, Talbot NJ, Manyasa EO, Bandyopadhyay R, Sere Y, Nutsugah SK, Talhinhas P, Hossain M, Brown AE, Sreenivasaprasad S. Magnaporthe oryzae populations adapted to finger millet and rice exhibit distinctive patterns of genetic diversity, sexuality and host interaction. Mol Biotechnol. 2012;50:145–58.

    Article  CAS  Google Scholar 

  • Tredway LP, Stevenson KL, Burpee LL. Mating type distribution and fertility status in Magnaporthe grisea populations from turf grasses in Georgia. Plant Dis. 2003;87:435–41.

    Google Scholar 

  • Tucker SL, Talbot NJ. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol. 2001;39:385–417.

    Google Scholar 

  • Ueyama A, Tsuda M. Formation of the perfect state in culture of Pyricularia sp. from some graminaceous plants (preliminary report). Trans Mycol Soc Jpn. 1975;16:420–422.

    Google Scholar 

  • Yaegashi H, Nishihara N. Production of the perfect stage in Pyricularia from cereals and grasses. Jpn J Phytopathol. 1976;42(4):511–5.

    Article  Google Scholar 

  • Yaegashi H, Udagawa S. The taxonomical identity of the perfect state of Pyricularia grisea and its allies. Can J Bot. 1978;56(2):180–3.

    Article  Google Scholar 

  • Zeigler RS. Recombination in Magnaporthe grisea. Annu Rev Phytopathol. 1998;36:249–75.

    Article  CAS  Google Scholar 

  • Zeigler RS, Scott RP, Leung SA, Teng PS. Proc. Symp. On Rice Blast Disease pp. 626, Univ. of Wisconsin-Madison, Madison, Wisconsin, USA, August 1994. CAB International, UK, and Inter. Rice Res. Inst., Los Banos, the Philippines. 1994.

    Google Scholar 

  • Zhang H, Wu Z, Wang C, Li Y, Xu JR. Germination and infectivity of microconidia in the rice blast fungus Magnaporthe oryzae. Nat Commun. 2014;5:1–9.

    Google Scholar 

  • Zickler D, Arnaise S, Coppin E, Debuchy R, Picard M. Altered mating-type identity in the fungus Podospora anserina leads to selfish nuclei, uniparental progeny, and haploid meiosis. Genetics. 1995;140:493–503.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prakash, G., Patel, A., Prakash, I., Sahu, K.P., Hosahatti, R., Kumar, A. (2021). Microconidia: Understanding Its Role in the Fungus Magnaporthe oryzae Inciting Rice Blast Disease. In: Nayaka, S.C., Hosahatti, R., Prakash, G., Satyavathi, C.T., Sharma, R. (eds) Blast Disease of Cereal Crops. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-60585-8_10

Download citation

Publish with us

Policies and ethics