Skip to main content

Smart Platforms for Biomedical Applications

  • Chapter
  • First Online:
New Trends in Nanoparticle Magnetism

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 308))

  • 818 Accesses

Abstract

This chapter provides an overview of the various types of magnetic micro- and nanoparticle systems used in biomedical applications. We broadly divide particle types into colloidally synthesized and lithographically defined on silicon wafers. The applications relevant to each particle type are highlighted followed by research case studies. Each case study highlights a novel approach to the engineering of magnetic particles for a specific application. Finally, future perspectives for the field are described with an emphasis on the challenges remaining to be solved for all the main application areas of magnetic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Adv. Mater. 19, 33 (2007). https://doi.org/10.1002/adma.200600674

    Article  Google Scholar 

  2. R. Hao, R. Xing, Z. Xu, Y. Hou, S. Gao, S. Sun, Adv. Mater. 22, 2729 (2010). https://doi.org/10.1002/adma.201000260

    Article  Google Scholar 

  3. T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. von Rechenberg, J. Magn. Magn. Mater. 293, 483 (2005). https://doi.org/10.1016/j.jmmm.2005.01.064

    Article  ADS  Google Scholar 

  4. S. Sun, H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002). https://doi.org/10.1021/ja026501x

    Article  Google Scholar 

  5. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008). https://doi.org/10.1021/cr068445e

  6. A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  7. L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Chem. Rev. 112, 5818 (2012). https://doi.org/10.1021/cr300068p

    Article  Google Scholar 

  8. Q.A Pankhurst, J. Connolly, S.K. Jones, J. Dobson, J. Phys. D. Appl. Phys. 36, R167 (2003). https://doi.org/10.1088/0022-3727/36/13/201

  9. M.L. Néel, Ann. Geophys. 5, 99 (1949). https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  10. W.F. Brown, Phys. Rev. 130, 1677 (1963). https://doi.org/10.1103/PhysRev.130.1677

    Article  ADS  Google Scholar 

  11. A.-H. Lu, E.L. Salabas, F. Schüth, Angew. Chemie Int. Ed. 46, 1222 (2007). https://doi.org/10.1002/anie.200602866

    Article  Google Scholar 

  12. R.H. Kodama, J. Magn. Magn. Mater. 200, 359 (1999). https://doi.org/10.1016/S0304-8853(99)00347-9

    Article  ADS  Google Scholar 

  13. I. Sharifi, H. Shokrollahi, S. Amiri, J. Magn. Magn. Mater. 324, 903 (2012). https://doi.org/10.1016/j.jmmm.2011.10.017

    Article  ADS  Google Scholar 

  14. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Angew. Chemie Int. Ed. 44, 2782 (2005). https://doi.org/10.1002/anie.200462551

    Article  Google Scholar 

  15. M. Bellusci, C. Aliotta, D. Fiorani, A. La Barbera, F. Padella, D. Peddis, M. Pilloni, D. Secci, J. Nanoparticle Res. 14, 904 (2012). https://doi.org/10.1007/s11051-012-0904-7

    Article  ADS  Google Scholar 

  16. D. Peddis, N. Yaacoub, M. Ferretti, A. Martinelli, G. Piccaluga, A. Musinu, C. Cannas, G. Navarra, J.M. Greneche, D. Fiorani, J. Phys. Condens. Matter 23, 426004 (2011). https://doi.org/10.1088/0953-8984/23/42/426004

    Article  ADS  Google Scholar 

  17. J. McCarthy, R. Weissleder, Adv. Drug Deliv. Rev. 60, 1241 (2008). https://doi.org/10.1016/j.addr.2008.03.014

    Article  Google Scholar 

  18. Y. Jun, J. Lee, J. Cheon, Angew. Chemie Int. Ed. 47, 5122 (2008). https://doi.org/10.1002/anie.200701674

    Article  Google Scholar 

  19. A. Louie, Chem. Rev. 110, 3146 (2010). https://doi.org/10.1021/cr9003538

    Article  Google Scholar 

  20. Y.-X.J. Wang, S.M. Hussain, G.P. Krestin, Eur. Radiol. 11, 2319 (2001). https://doi.org/10.1007/s003300100908

    Article  Google Scholar 

  21. H. Bin Na, I.C. Song, T. Hyeon, Adv. Mater. 21, 2133 (2009). https://doi.org/10.1002/adma.200802366.

  22. J.W.M. Bulte, D.L. Kraitchman, NMR Biomed. 17, 484 (2004). https://doi.org/10.1002/nbm.924

    Article  Google Scholar 

  23. B. Gleich, J. Weizenecker, Nature 435, 1214 (2005). https://doi.org/10.1038/nature03808

    Article  ADS  Google Scholar 

  24. A. Jordan, R. Scholz, K. Maier-Hauff, M. Johannsen, P. Wust, J. Nadobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, R. Felix, J. Magn. Magn. Mater. 225, 118 (2001). https://doi.org/10.1016/S0304-8853(00)01239-7

    Article  ADS  Google Scholar 

  25. R. Hergt, S. Dutz, R. Müller, M. Zeisberger, J. Phys. Condens. Matter 18, S2919 (2006). https://doi.org/10.1088/0953-8984/18/38/S26

    Article  ADS  Google Scholar 

  26. S. Laurent, S. Dutz, U.O. Häfeli, M. Mahmoudi, Adv. Colloid Interface Sci. 166, 8 (2011). https://doi.org/10.1016/j.cis.2011.04.003

    Article  Google Scholar 

  27. C.S.S.R. Kumar, F. Mohammad, Adv. Drug Deliv. Rev. 63, 789 (2011). https://doi.org/10.1016/j.addr.2011.03.008

    Article  Google Scholar 

  28. J.H. Lee, J.T. Jang, J.S. Choi, S.H. Moon, S.H. Noh, J.W. Kim, J.G. Kim, I.S. Kim, K.I. Park, J. Cheon, Nat. Nanotechnol. 6, 418 (2011). https://doi.org/10.1038/nnano.2011.95

    Article  ADS  Google Scholar 

  29. A. Jordan, R. Scholz, P. Wust, H. Fähling, R. Felix, J. Magn. Magn. Mater. 201, 413 (1999). https://doi.org/10.1016/S0304-8853(99)00088-8

    Article  ADS  Google Scholar 

  30. Y.R. Chemla, H.L. Grossman, Y. Poon, R. McDermott, R. Stevens, M.D. Alper, J. Clarke, Proc. Natl. Acad. Sci. U. S. A. 97, 14268 (2000). https://doi.org/10.1073/pnas.97.26.14268

    Article  ADS  Google Scholar 

  31. J.M. Nam, C.S. Thaxton, C.A. Mirkin, Science (80-. ) 301, 1884 (2003). https://doi.org/10.1126/science.1088755

  32. D.A. Hall, R.S. Gaster, T. Lin, S.J. Osterfeld, S. Han, B. Murmann, S.X. Wang, Biosens. Bioelectron. 25, 2051 (2010). https://doi.org/10.1016/j.bios.2010.01.038

    Article  Google Scholar 

  33. G. Li, S. Sun, R.J. Wilson, R.L. White, N. Pourmand, S.X. Wang, Sensors Actuators. a Sens. Actuators Phys. 126, 98 (2006). https://doi.org/10.1016/j.sna.2005.10.001

    Article  Google Scholar 

  34. S.X. Wang, G. Li, in IEEE Trans. Magn. 1687–1702 (2008). https://doi.org/10.1109/TMAG.2008.920962.

  35. J. Dobson, Nat. Nanotechnol. 3, 139 (2008). https://doi.org/10.1038/nnano.2008.39

    Article  ADS  Google Scholar 

  36. D.-H. Kim, E.A Rozhkova, I.V Ulasov, S.D. Bader, T. Rajh, M.S. Lesniak, V. Novosad, Nat. Mater. 9, 165 (2010). https://doi.org/10.1038/nmat2591

  37. F. Bloch, Phys. Rev. 70, 460 (1946). https://doi.org/10.1103/PhysRev.70.460

    Article  ADS  Google Scholar 

  38. E.M. Purcell, H.C. Torrey, R.V. Pound, Phys. Rev. 69, 37 (1946). https://doi.org/10.1103/PhysRev.69.37

    Article  ADS  Google Scholar 

  39. C.F.G.C. Geraldes, S. Laurent, Contrast Media Mol. Imaging 4, 1 (2009). https://doi.org/10.1002/cmmi.265

    Article  Google Scholar 

  40. R.A. Pooley, Radiographics 25, 1087 (2005). https://doi.org/10.1148/rg.254055027

    Article  Google Scholar 

  41. P.A. Bottomley, C.J. Hardy, R.E. Argersinger, G. Allen Moore, Med. Phys. 14, 1 (1987). https://doi.org/10.1118/1.596111

  42. C.T. Yang, P. Padmanabhan, B.Z. Gulyás, RSC Adv. 6, 60945 (2016). https://doi.org/10.1039/c6ra07782j

    Article  Google Scholar 

  43. G. Marchal, Y. Ni, P. Herijgers, W. Flameng, C. Petré, H. Bosmans, J. Yu, W. Ebert, C.S. Hilger, D. Pfefferer, W. Semmler, A.L. Baert, Eur. Radiol. 6, 2 (1996). https://doi.org/10.1007/BF00619942

    Article  Google Scholar 

  44. H. Bin Na, T. Hyeon, J. Mater. Chem. 19, 6267 (2009). https://doi.org/10.1039/b902685a

  45. S. Flacke, S. Fischer, M.J. Scott, R.J. Fuhrhop, J.S. Allen, M. McLean, P. Winter, G.A. Sicard, P.J. Gaffney, S.A. Wickline, G.M. Lanza, Circulation 104, 1280 (2001). https://doi.org/10.1161/hc3601.094303

    Article  Google Scholar 

  46. R.J. Kim, E.L. Chen, J.A.C. Lima, R.M. Judd, Circulation 94, 3318 (1996). https://doi.org/10.1161/01.CIR.94.12.3318

    Article  Google Scholar 

  47. E. Wiener, M.W. Brechbiel, H. Brothers, R.L. Magin, O.A. Gansow, D.A. Tomalia, P.C. Lauterbur, Magn. Reson. Med. 31, 1 (1994). https://doi.org/10.1002/mrm.1910310102

    Article  Google Scholar 

  48. V. Trubetskoy, Adv. Drug Deliv. Rev. 37, 81 (1999). https://doi.org/10.1016/S0169-409X(98)00100-8

    Article  Google Scholar 

  49. C.H. Reynolds, N. Annan, K. Beshah, J.H. Huber, S.H. Shaber, R.E. Lenkinski, J.A. Wortman, J. Am. Chem. Soc. 122, 8940 (2000). https://doi.org/10.1021/ja001426g

    Article  Google Scholar 

  50. P. Chandran, A. Sasidharan, A. Ashokan, D. Menon, S. Nair, M. Koyakutty, Nanoscale 3, 4150 (2011). https://doi.org/10.1039/c1nr10591d

    Article  ADS  Google Scholar 

  51. J. Kukowska-Latallo, Int. J. Nanomedicine 3, 201 (2008). https://doi.org/10.2147/ijn.s2696

    Article  Google Scholar 

  52. Y. Wang, T.K. Alkasab, O. Narin, R.M. Nazarian, R. Kaewlai, J. Kay, H.H. Abujudeh, Int. Braz J Urol 37, 541 (2011). https://doi.org/10.1590/S1677-55382011000400018

    Article  Google Scholar 

  53. T.G. St. Pierre, P.R. Clark, W. Chua-Anusorn, A.J. Fleming, G.P. Jeffrey, J.K. Olynyk, P. Pootrakul, E. Robins, R. Lindeman, Blood 105, 855 (2005). https://doi.org/10.1182/blood-2004-01-0177

  54. Z.R. Stephen, F.M. Kievit, M. Zhang, Mater. Today 14, 330 (2011). https://doi.org/10.1016/S1369-7021(11)70163-8

    Article  Google Scholar 

  55. M.A. Busquets, J. Estelrich, M.J. Sánchez-Martín, Int. J. Nanomedicine 10, 1727 (2015). https://doi.org/10.2147/IJN.S76501

    Article  Google Scholar 

  56. G.K. Das, N.J.J. Johnson, J. Cramen, B. Blasiak, P. Latta, B. Tomanek, F.C.J.M. Van Veggel, J. Phys. Chem. Lett. 3, 524 (2012). https://doi.org/10.1021/jz201664h

    Article  Google Scholar 

  57. H. Yang, C. Zhang, X. Shi, H. Hu, X. Du, Y. Fang, Y. Ma, H. Wu, S. Yang, Biomaterials 31, 3667 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.055

    Article  Google Scholar 

  58. C.G. Hadjipanayis, M.J. Bonder, S. Balakrishnan, X. Wang, H. Mao, G.C. Hadjipanayis, Small 4, 1925 (2008). https://doi.org/10.1002/smll.200800261

    Article  Google Scholar 

  59. Q.L. Vuong, J.F. Berret, J. Fresnais, Y. Gossuin, O. Sandre, Adv. Healthc. Mater. 1, 502 (2012). https://doi.org/10.1002/adhm.201200078

    Article  Google Scholar 

  60. P.C. Lauterbur, Nature 242, 190 (1973). https://doi.org/10.1038/242190a0

    Article  ADS  Google Scholar 

  61. A.P. Khandhar, R.M. Ferguson, H. Arami, K.M. Krishnan, Biomaterials 34, 3837 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.087

    Article  Google Scholar 

  62. D. Eberbeck, F. Wiekhorst, S. Wagner, L. Trahms, Appl. Phys. Lett. 98, 182502 (2011). https://doi.org/10.1063/1.3586776

    Article  ADS  Google Scholar 

  63. S. Biederer, T. Knopp, T.F. Sattel, K. Lüdtke-Buzug, B. Gleich, J. Weizenecker, J. Borgert, T.M. Buzug, J. Phys. D. Appl. Phys. 42, 205007 (2009). https://doi.org/10.1088/0022-3727/42/20/205007

    Article  ADS  Google Scholar 

  64. P.C. Fannin, S.W. Charles, J. Phys. D. Appl. Phys. 22, 187 (1989). https://doi.org/10.1088/0022-3727/22/1/027

    Article  ADS  Google Scholar 

  65. P.W. Goodwill, A. Tamrazian, L.R. Croft, C.D. Lu, E.M. Johnson, R. Pidaparthi, R.M. Ferguson, A.P. Khandhar, K.M. Krishnan, S.M. Conolly, Appl. Phys. Lett. 98, 262502 (2011). https://doi.org/10.1063/1.3604009

    Article  ADS  Google Scholar 

  66. N. Panagiotopoulos, F. Vogt, J. Barkhausen, T.M. Buzug, R.L. Duschka, K. Lüdtke-Buzug, M. Ahlborg, G. Bringout, C. Debbeler, M. Gräser, C. Kaethner, J. Stelzner, H. Medimagh, J. Haegele, Int. J. Nanomedicine 10, 3097 (2015). https://doi.org/10.2147/IJN.S70488

    Article  Google Scholar 

  67. J. Weizenecker, B. Gleich, J. Rahmer, H. Dahnke, J. Borgert, Phys. Med. Biol. 54, L1 (2009). https://doi.org/10.1088/0031-9155/54/5/L01

    Article  ADS  Google Scholar 

  68. R.M. Ferguson, A.P. Khandhar, K.M. Krishnan, J. Appl. Phys. 111, 07B318 (2012). https://doi.org/10.1063/1.3676053

    Article  Google Scholar 

  69. M.H. Pablico-Lansigan, S.F. Situ, A.C.S. Samia, Nanoscale 5, 4040 (2013). https://doi.org/10.1039/c3nr00544e

    Article  ADS  Google Scholar 

  70. G. Vallejo-Fernandez, O. Whear, A.G. Roca, S. Hussain, J. Timmis, V. Patel, K. O’Grady, J. Phys. D. Appl. Phys. 46, 312001 (2013). https://doi.org/10.1088/0022-3727/46/31/312001

    Article  ADS  Google Scholar 

  71. R. Hergt, R. Hiergeist, M. Zeisberger, G. Glöckl, W. Weitschies, L.P. Ramirez, I. Hilger, W.A. Kaiser, J. Magn. Magn. Mater. 280, 358 (2004). https://doi.org/10.1016/j.jmmm.2004.03.034

    Article  ADS  Google Scholar 

  72. R. Hergt, S. Dutz, M. Röder, J. Phys. Condens. Matter 20, 385214 (2008). https://doi.org/10.1088/0953-8984/20/38/385214

    Article  ADS  Google Scholar 

  73. A.A. McGhie, C. Marquina, K. O’Grady, G. Vallejo-Fernandez, J. Phys. D. Appl. Phys. 50, 455003 (2017). https://doi.org/10.1088/1361-6463/aa88ed

    Article  ADS  Google Scholar 

  74. G. Vallejo-Fernandez, K. O’Grady, Appl. Phys. Lett. 103, 142417 (2013). https://doi.org/10.1063/1.4824649

    Article  ADS  Google Scholar 

  75. C.L. Dennis, R. Ivkov, Int. J. Hyperth. 29, 715 (2013). https://doi.org/10.3109/02656736.2013.836758

    Article  Google Scholar 

  76. I.M. Obaidat, B. Issa, Y. Haik, Nanomaterials 5, 63 (2014). https://doi.org/10.3390/nano5010063

    Article  Google Scholar 

  77. F.H.C. Crick, A.F.W. Hughes, Exp. Cell Res. 1, 37 (1950). https://doi.org/10.1016/0014-4827(50)90048-6

    Article  Google Scholar 

  78. N. Wang, J.P. Butler, D.E. Ingber, Science (80-. ). 260, 1124 (1993). https://doi.org/10.1126/science.7684161

  79. A. Du Toit, Nat. Rev. Mol. Cell Biol. 14, 196 (2013). https://doi.org/10.1038/nrm3534

    Article  Google Scholar 

  80. C.J. Meyer, F.J. Alenghat, P. Rim, J.H.J. Fong, B. Fabry, D.E. Ingber, Nat. Cell Biol. 2, 666 (2000). https://doi.org/10.1038/35023621

    Article  Google Scholar 

  81. H.A. Benhardt, E.M. Cosgriff-Hernandez, Tissue Eng. Part B Rev. 15, 467 (2009). https://doi.org/10.1089/ten.teb.2008.0687

    Article  Google Scholar 

  82. S.H. Cartmell, J. Dobson, S.B. Verschueren, A.J. El Haj, IEEE Trans. Nanobioscience 1, 92 (2002). https://doi.org/10.1109/TNB.2002.806945

    Article  Google Scholar 

  83. G.R. Kirkham, K.J. Elliot, A. Keramane, D.M. Salter, J.P. Dobson, A.J. El Haj, S.H. Cartmell, IEEE Trans. Nanobioscience 9, 71 (2010). https://doi.org/10.1109/TNB.2010.2042065

    Article  Google Scholar 

  84. D. Cheng, X. Li, G. Zhang, H. Shi, Nanoscale Res. Lett. 9, 195 (2014). https://doi.org/10.1186/1556-276X-9-195

    Article  ADS  Google Scholar 

  85. M. Domenech, I. Marrero-Berrios, M. Torres-Lugo, C. Rinaldi, ACS Nano 7, 5091 (2013). https://doi.org/10.1021/nn4007048

    Article  Google Scholar 

  86. T.A.P. Rocha-Santos, TtrAc Trends Anal. Chem. 62, 28 (2014). https://doi.org/10.1016/j.trac.2014.06.016

    Article  Google Scholar 

  87. S.X. Wang, S.Y. Bae, G. Li, S. Sun, R.L. White, J.T. Kemp, C.D. Webb, J. Magn. Magn. Mater. 731–736 (2005). https://doi.org/10.1016/j.jmmm.2005.02.054

  88. P.I. Nikitin, P.M. Vetoshko, T.I. Ksenevich, J. Magn. Magn. Mater. 311, 445 (2007). https://doi.org/10.1016/j.jmmm.2006.10.1180

    Article  ADS  Google Scholar 

  89. I. Koh, L. Josephson, Sensors 9, 8130 (2009). https://doi.org/10.3390/s91008130

    Article  Google Scholar 

  90. J.B. Haun, T.J. Yoon, H. Lee, R. Weissleder, Wiley Interdiscip. Rev. Nanomedicine. NanoBiotechnology 2, 291 (2010). https://doi.org/10.1002/wnan.84

    Article  Google Scholar 

  91. J. Connolly, T.G. St Pierre, J. Magn. Magn. Mater. 225, 156 (2001). https://doi.org/10.1016/S0304-8853(00)01245-2

  92. G. Lin, D. Makarov, O.G. Schmidt, Lab Chip 17, 1884 (2017). https://doi.org/10.1039/c7lc00026j

    Article  Google Scholar 

  93. S.J. Osterfeld, H. Yu, R.S. Gaster, S. Caramuta, L. Xu, S.J. Han, D.A. Hall, R.J. Wilson, S. Sun, R.L. White, R.W. Davis, N. Pourmand, S.X. Wang, Proc. Natl. Acad. Sci. U. S. A. 105, 20637 (2008). https://doi.org/10.1073/pnas.0810822105

    Article  ADS  Google Scholar 

  94. D.L. Graham, H.A. Ferreira, P.P. Freitas, Trends Biotechnol. 22, 455 (2004). https://doi.org/10.1016/j.tibtech.2004.06.006

    Article  Google Scholar 

  95. J. Schotter, P.B. Kamp, A. Becker, A. Pühler, G. Reiss, H. Brückl, Biosens. Bioelectron. 19, 1149 (2004). https://doi.org/10.1016/j.bios.2003.11.007

    Article  Google Scholar 

  96. W. Wang, Y. Wang, L. Tu, Y. Feng, T. Klein, J.-P. Wang, Sci. Rep. 4, 5716 (2015). https://doi.org/10.1038/srep05716

    Article  Google Scholar 

  97. J.R. Lee, C.T. Chan, D. Ruderman, H.Y. Chuang, R.S. Gaster, M. Atallah, P. Mallick, S.W. Lowe, S.S. Gambhir, S.X. Wang, Nano Lett. 17, 6644 (2017). https://doi.org/10.1021/acs.nanolett.7b02591

    Article  ADS  Google Scholar 

  98. R.S. Gaster, D.A. Hall, C.H. Nielsen, S.J. Osterfeld, H. Yu, K.E. MacH, R.J. Wilson, B. Murmann, J.C. Liao, S.S. Gambhir, S.X. Wang, Nat. Med. 15, 1327 (2009). https://doi.org/10.1038/nm.2032

    Article  Google Scholar 

  99. E.A. Vitol, V. Novosad, E.A. Rozhkova, Nanomedicine 7, 1611 (2012). https://doi.org/10.2217/nnm.12.133

    Article  Google Scholar 

  100. E.A. Vitol, V. Novosad, E.A. Rozhkova, IEEE Trans. Magn. 48, 3269 (2012). https://doi.org/10.1109/TMAG.2012.2198209

    Article  ADS  Google Scholar 

  101. T. Vemulkar, E.N. Welbourne, R. Mansell, D.C.M.C. Petit, R.P. Cowburn, Appl. Phys. Lett. 110, 042402 (2017). https://doi.org/10.1063/1.4974211

    Article  ADS  Google Scholar 

  102. W. Hu, R.J. Wilson, A. Koh, A. Fu, A.Z. Faranesh, C.M. Earhart, S.J. Osterfeld, S.J. Han, L. Xu, S. Guccione, R. Sinclair, S.X. Wang, Adv. Mater. 20, 1479 (2008). https://doi.org/10.1002/adma.200703077

    Article  Google Scholar 

  103. R.P. Cowburn, D.K. Koltsov, A.O. Adeyeye, M.E. Welland, 2 (1999)

    Google Scholar 

  104. W. Scholz, K.Y. Guslienko, V. Novosad, D. Suess, T. Schrefl, R. Chantrell, J. Fidler, J. Magn. Magn. Mater. 266, 155 (2003). https://doi.org/10.1016/S0304-8853(03)00466-9

    Article  ADS  Google Scholar 

  105. K.Y. Guslienko, V. Novosad, Y. Otani, H. Shima, K. Fukamichi, Appl. Phys. Lett. 78, 3848 (2001). https://doi.org/10.1063/1.1377850

    Article  ADS  Google Scholar 

  106. K.Y. Guslienko, V. Novosad, Y. Otani, H. Shima, K. Fukamichi, Phys. Rev. B Condens. Matter Mater. Phys. 65, 244141 (2002). https://doi.org/10.1103/PhysRevB.65.024414

  107. T. Kasuya, Prog. Theor. Phys. 16, 45 (1956)

    Article  ADS  Google Scholar 

  108. C. Kittel, M.A. Ruderman, Phsyical Rev. 96, 72 (1954)

    Google Scholar 

  109. K. Yosida, Phys. Rev. 106 (1957)

    Google Scholar 

  110. J.L. Leal, M.H. Kryder, J. Appl. Phys. 83, 3720 (1998). https://doi.org/10.1063/1.366597

    Article  ADS  Google Scholar 

  111. S. Bandiera, R.C. Sousa, Y. Dahmane, C. Ducruet, C. Portemont, V. Baltz, S. Auffret, I.L. Prejbeanu, B. Dieny, I.E.E.E. Magn, Lett. 1, 3000204 (2010). https://doi.org/10.1109/LMAG.2010.2052238

    Article  Google Scholar 

  112. R. Lavrijsen, J.H. Lee, A. Fernández-Pacheco, D.C.M.C. Petit, R. Mansell, R.P. Cowburn, Nature 493, 647 (2013). https://doi.org/10.1038/nature11733

    Article  ADS  Google Scholar 

  113. P. Bruno, J. Phys. Condens. Matter 11, 9403 (1999). https://doi.org/10.1088/0953-8984/11/48/305

    Article  ADS  Google Scholar 

  114. P. Bruno, C. Chappert, Phys. Rev. Lett. 67, 1602 (1991)

    Article  ADS  Google Scholar 

  115. D. Mauri, S.S. Parkin, 44, 7131 (1991)

    Google Scholar 

  116. S.S. Parkin, Phys. Rev. Lett. 67, 3598 (1991)

    Article  ADS  Google Scholar 

  117. M. D. Stiles, 2, 1 (2002).

    Google Scholar 

  118. S. Leulmi, H. Joisten, T. Dietsch, C. Iss, M. Morcrette, S. Auffret, P. Sabon, B. Dieny, Appl. Phys. Lett. 103, 132412 (2013). https://doi.org/10.1063/1.4821854

    Article  ADS  Google Scholar 

  119. T. Courcier, H. Joisten, P. Sabon, S. Leulmi, T. Dietsch, J. Faure-Vincent, S. Auffret, B. Dieny, Appl. Phys. Lett. 99, 093107 (2011). https://doi.org/10.1063/1.3633121

    Article  ADS  Google Scholar 

  120. M.T. Johnson, P.J.H. Bloemen, F.J.A. Den Broeder, J.J. De Vries, Reports. Prog. Phys. 59, 1409 (1996). https://doi.org/10.1088/0034-4885/59/11/002

    Article  ADS  Google Scholar 

  121. P. Bruno, Phys. Rev. B 39, 865 (1989). https://doi.org/10.1103/PhysRevB.39.865

    Article  ADS  Google Scholar 

  122. G.C. Fletcher, Proc. Phys. Soc. Sect. A 67, 505 (1954). https://doi.org/10.1088/0370-1298/67/6/303

    Article  ADS  Google Scholar 

  123. J.H. Van Vleck, Phys. Rev. 52, 1178 (1937). https://doi.org/10.1103/PhysRev.52.1178

    Article  ADS  Google Scholar 

  124. T. Vemulkar, R. Mansell, D.C.M.C. Petit, R.P. Cowburn, M.S. Lesniak, Appl. Phys. Lett. 107, 012403 (2015). https://doi.org/10.1063/1.4926336

    Article  ADS  Google Scholar 

  125. R. Mansell, T. Vemulkar, D.C.M.C. Petit, Y. Cheng, J. Murphy, M.S. Lesniak, R.P. Cowburn, Sci. Rep. 7, 4257 (2017). https://doi.org/10.1038/s41598-017-04154-1

    Article  ADS  Google Scholar 

  126. M.E. Muroski, R.A. Morshed, Y. Cheng, T. Vemulkar, R. Mansell, Y. Han, L. Zhang, K.S. Aboody, R.P. Cowburn, M.S. Lesniak, PLoS ONE 11, e0145129 (2016). https://doi.org/10.1371/journal.pone.0145129

    Article  Google Scholar 

  127. Y. Cheng, M.E. Muroski, D.C.M.C. Petit, R. Mansell, T. Vemulkar, R.A. Morshed, Y. Han, I.V. Balyasnikova, C.M. Horbinski, X. Huang, L. Zhang, R.P. Cowburn, M.S. Lesniak, J. Control. Release 223, 75 (2016). https://doi.org/10.1016/j.jconrel.2015.12.028

    Article  Google Scholar 

  128. Y. Zhang, J. Yu, H.N. Bomba, Y. Zhu, Z. Gu, Chem. Rev. 116, 12536 (2016). https://doi.org/10.1021/acs.chemrev.6b00369

    Article  Google Scholar 

  129. Y. Qiu, S. Tong, L. Zhang, Y. Sakurai, D.R. Myers, L. Hong, W.A. Lam, G. Bao, Nat. Commun. 8, 15594 (2017). https://doi.org/10.1038/ncomms15594

    Article  ADS  Google Scholar 

  130. E.Y. Yu, M. Bishop, B. Zheng, R.M. Ferguson, A.P. Khandhar, S.J. Kemp, K.M. Krishnan, P.W. Goodwill, S.M. Conolly, Nano Lett. (2017). https://doi.org/10.1021/acs.nanolett.6b04865

    Article  Google Scholar 

  131. G. Song, C. Liang, H. Gong, M. Li, X. Zheng, L. Cheng, K. Yang, X. Jiang, Z. Liu, Adv. Mater. 27, 6110 (2015). https://doi.org/10.1002/adma.201503006

    Article  Google Scholar 

  132. A.P. Khandhar, P. Keselman, S.J. Kemp, R.M. Ferguson, P.W. Goodwill, S.M. Conolly, K.M. Krishnan, Nanoscale 9, 1299 (2017). https://doi.org/10.1039/c6nr08468k

    Article  Google Scholar 

  133. H. Kobayashi, R. Watanabe, P.L. Choyke, Theranostics 4, 81 (2014). https://doi.org/10.7150/thno.7193

    Article  Google Scholar 

  134. C. Martinez-Boubeta, K. Simeonidis, A. Makridis, M. Angelakeris, O. Iglesias, P. Guardia, A. Cabot, L. Yedra, S. Estradé, F. Peiró, Z. Saghi, P.A. Midgley, I. Conde-Leborán, D. Serantes, D. Baldomir, Sci. Rep. 3, 1652 (2013). https://doi.org/10.1038/srep01652

    Article  Google Scholar 

  135. R. Hergt, R. Hiergeist, M. Zeisberger, D. Schüler, U. Heyen, I. Hilger, W.A. Kaiser, J. Magn. Magn. Mater. 293, 80 (2005). https://doi.org/10.1016/j.jmmm.2005.01.047

    Article  ADS  Google Scholar 

  136. J.G. Ovejero, D. Cabrera, J. Carrey, T. Valdivielso, G. Salas, F.J. Teran, Phys. Chem. Chem. Phys. 18, 10954 (2016). https://doi.org/10.1039/c6cp00468g

    Article  Google Scholar 

  137. M.E. Sadat, R. Patel, J. Sookoor, S.L. Bud’Ko, R.C. Ewing, J. Zhang, H. Xu, Y. Wang, G.M. Pauletti, D.B. Mast, D. Shi, Mater. Sci. Eng. C 42, 52 (2014). https://doi.org/10.1016/j.msec.2014.04.064

  138. D.F. Coral, P. Mendoza Zélis, M. Marciello, M.D.P. Morales, A. Craievich, F.H. Sánchez, M.B. Fernández Van Raap, Langmuir 32, 1201 (2016). https://doi.org/10.1021/acs.langmuir.5b03559

  139. L.C. Branquinho, M.S. Carrião, A.S. Costa, N. Zufelato, M.H. Sousa, R. Miotto, R. Ivkov, A.F. Bakuzis, Sci. Rep. 3, 2887 (2013). https://doi.org/10.1038/srep02887

    Article  ADS  Google Scholar 

  140. E. Rapoport, D. Montana, G.S.D. Beach, Lab Chip 12, 4433 (2012). https://doi.org/10.1039/c2lc40715a

    Article  Google Scholar 

  141. G. Vieira, T. Henighan, A. Chen, A.J. Hauser, F.Y. Yang, J.J. Chalmers, R. Sooryakumar, Phys. Rev. Lett. 103, 128101 (2009). https://doi.org/10.1103/PhysRevLett.103.128101

    Article  ADS  Google Scholar 

  142. E. Rapoport, G.S.D. Beach, Sci. Rep. 7, 10139 (2017). https://doi.org/10.1038/s41598-017-10149-9

    Article  ADS  Google Scholar 

  143. E. Rapoport, G.S.D. Beach, Phys. Rev. B Condens. Matter Mater. Phys. 87, 174426 (2013). https://doi.org/10.1103/PhysRevB.87.174426.

  144. E. Rapoport, G.S.D. Beach, Appl. Phys. Lett. 100, 082401 (2012). https://doi.org/10.1063/1.3684972

    Article  ADS  Google Scholar 

  145. M. Donolato, B.T. Dalslet, M.F. Hansen, Biomicrofluidics 6, 024110 (2012). https://doi.org/10.1063/1.4704520

    Article  Google Scholar 

  146. G. Vieira, A. Chen, T. Henighan, J. Lucy, F.Y. Yang, R. Sooryakumar, Phys. Rev. B 85, 174440 (2012). https://doi.org/10.1103/PhysRevB.85.174440

    Article  ADS  Google Scholar 

  147. R.D. McMichael, M.J. Donahue, IEEE Trans. Magn. 33, 4167 (1997). https://doi.org/10.1109/20.619698

    Article  ADS  Google Scholar 

  148. W.C. Uhlig, M.J. Donahue, D.T. Pierce, J. Unguris, J. Appl. Phys. 105, 103902 (2009). https://doi.org/10.1063/1.3125526

    Article  ADS  Google Scholar 

  149. D.T. Chiu, A.J. DeMello, D. Di Carlo, P.S. Doyle, C. Hansen, R.M. Maceiczyk, R.C.R. Wootton, Chem 2, 201 (2017). https://doi.org/10.1016/j.chempr.2017.01.009

    Article  Google Scholar 

  150. Y.M. Wang, X. Cao, G.H. Liu, R.Y. Hong, Y.M. Chen, X.F. Chen, H.Z. Li, B. Xu, D.G. Wei, J. Magn. Magn. Mater. 323, 2953 (2011). https://doi.org/10.1016/j.jmmm.2011.05.060

    Article  ADS  Google Scholar 

  151. R. Qiao, C. Yang, M. Gao, J. Mater. Chem. 19, 6274 (2009). https://doi.org/10.1039/b902394a

    Article  Google Scholar 

  152. R.A. Petros, J.M. Desimone, Nat. Rev. Drug Discov. 9, 615 (2010). https://doi.org/10.1038/nrd2591

    Article  Google Scholar 

  153. K.M. Krishnan, IEEE Trans. Magn. 46, 2523 (2010). https://doi.org/10.1109/TMAG.2010.2046907

    Article  ADS  Google Scholar 

  154. T.H. Shin, Y. Choi, S. Kim, J. Cheon, Chem. Soc. Rev. 44, 4501 (2015). https://doi.org/10.1039/c4cs00345d

    Article  Google Scholar 

  155. M.W. Ahmad, W. Xu, S.J. Kim, J.S. Baeck, Y. Chang, J.E. Bae, K.S. Chae, J.A. Park, T.J. Kim, G.H. Lee, Sci. Rep. 5, 8549 (2015). https://doi.org/10.1038/srep08549

    Article  ADS  Google Scholar 

  156. R. Anbazhagan, Y.A. Su, H.C. Tsai, R.J. Jeng, A.C.S. Appl, Mater. Interfaces 8, 1827 (2016). https://doi.org/10.1021/acsami.5b09722

    Article  Google Scholar 

  157. Y.K. Peng, C.N.P. Lui, Y.W. Chen, S.W. Chou, P.T. Chou, K.K.L. Yung, S.C. Edman Tsang, Nanotechnology 29, 015102 (2018). https://doi.org/10.1088/1361-6528/aa96eb

  158. M. Yang, L. Gao, K. Liu, C. Luo, Y. Wang, L. Yu, H. Peng, W. Zhang, Talanta 131, 661 (2015). https://doi.org/10.1016/j.talanta.2014.08.042

    Article  Google Scholar 

  159. R.M. Ferguson, K.R. Minard, K.M. Krishnan, J. Magn. Magn. Mater. 321, 1548 (2009). https://doi.org/10.1016/j.jmmm.2009.02.083

    Article  ADS  Google Scholar 

  160. Y. Du, P.T. Lai, C.H. Leung, P.W.T. Pong, Int. J. Mol. Sci. 14, 18682 (2013). https://doi.org/10.3390/ijms140918682

    Article  Google Scholar 

  161. R. Dhavalikar, C. Rinaldi, J. Appl. Phys. 115, 074308 (2014). https://doi.org/10.1063/1.4866680

    Article  ADS  Google Scholar 

  162. L. Kafrouni, O. Savadogo, Prog. Biomater. 5, 147 (2016). https://doi.org/10.1007/s40204-016-0054-6

    Article  Google Scholar 

  163. M.R. Phadatare, J.V. Meshram, K.V. Gurav, J.H. Kim, S.H. Pawar, J. Phys. D. Appl. Phys. 49, 095004 (2016). https://doi.org/10.1088/0022-3727/49/9/095004

    Article  ADS  Google Scholar 

  164. S.H. Moon, S.H. Noh, J.H. Lee, T.H. Shin, Y. Lim, J. Cheon, Nano Lett. 17, 800 (2017). https://doi.org/10.1021/acs.nanolett.6b04016

    Article  ADS  Google Scholar 

  165. H. Khurshid, J. Alonso, Z. Nemati, M.H. Phan, P. Mukherjee, M.L. Fdez-Gubieda, J.M. Barandiarán, H. Srikanth, J. Appl. Phys. 117, 17A337 (2015). https://doi.org/10.1063/1.4919250

    Article  Google Scholar 

  166. N.A. Usov, B.Y. Liubimov, J. Appl. Phys. 112, 023901 (2012). https://doi.org/10.1063/1.4737126

    Article  ADS  Google Scholar 

  167. S.H. Noh, W. Na, J.T. Jang, J.H. Lee, E.J. Lee, S.H. Moon, Y. Lim, J.S. Shin, J. Cheon, Nano Lett. 12, 3716 (2012). https://doi.org/10.1021/nl301499u

    Article  ADS  Google Scholar 

  168. N.A. Usov, M.S. Nesmeyanov, V.P. Tarasov, Sci. Rep. 8, 1224 (2018). https://doi.org/10.1038/s41598-017-18162-8

    Article  ADS  Google Scholar 

  169. X.L. Liu, Y. Yang, C.T. Ng, L.Y. Zhao, Y. Zhang, B.H. Bay, H.M. Fan, J. Ding, Adv. Mater. 27, 1939 (2015). https://doi.org/10.1002/adma.201405036

    Article  Google Scholar 

  170. S. Ruta, R. Chantrell, O. Hovorka, Sci. Rep. 5, 9090 (2015). https://doi.org/10.1038/srep09090

    Article  ADS  Google Scholar 

  171. D.B. Reeves, J.B. Weaver, Appl. Phys. Lett. 104, 102403 (2014). https://doi.org/10.1063/1.4867987

    Article  ADS  Google Scholar 

  172. C. Haase, U. Nowak, Phys. Rev. B 85, 045435 (2012). https://doi.org/10.1103/PhysRevB.85.045435

    Article  ADS  Google Scholar 

  173. G.T. Landi, Phys. Rev. B 89, 014403 (2014). https://doi.org/10.1103/PhysRevB.89.014403

    Article  ADS  Google Scholar 

  174. R. Fu, Y. Yan, C. Roberts, Z. Liu, Y. Chen, Sci. Rep. 8, 4704 (2018). https://doi.org/10.1038/s41598-018-23225-5

    Article  ADS  Google Scholar 

  175. S. Dutz, R. Hergt, Nanotechnology 25, 452001 (2014). https://doi.org/10.1088/0957-4484/25/45/452001

    Article  ADS  Google Scholar 

  176. M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. WaldÖFner, R. Scholz, S. Deger, P. Wust, S.A. Loening, A. Jordan, Int. J. Hyperth. 21, 637 (2005). https://doi.org/10.1080/02656730500158360

  177. M. Johannsen, B. Thiesen, P. Wust, A. Jordan, Int. J. Hyperth. 26, 790 (2010). https://doi.org/10.3109/02656731003745740

    Article  Google Scholar 

  178. M.T. Bryan, K.H. Smith, M.E. Real, M.A. Bashir, P.W. Fry, P. Fischer, M.-Y. Im, T. Schrefl, D.A. Allwood, J.W. Haycock, IEEE Magn. Lett. 1, 1500104 (2010). https://doi.org/10.1109/LMAG.2010.2046143

  179. B. Lim, V. Reddy, X. Hu, K. Kim, M. Jadhav, R. Abedini-Nassab, Y.-W. Noh, Y.T. Lim, B.B. Yellen, C. Kim, Nat. Commun. 5, 3846 (2014). https://doi.org/10.1038/ncomms4846

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun Vemulkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vemulkar, T., Cowburn, R.P. (2021). Smart Platforms for Biomedical Applications. In: Peddis, D., Laureti, S., Fiorani, D. (eds) New Trends in Nanoparticle Magnetism. Springer Series in Materials Science, vol 308. Springer, Cham. https://doi.org/10.1007/978-3-030-60473-8_15

Download citation

Publish with us

Policies and ethics