Skip to main content

Algorithm Bias Detection and Mitigation in Lenovo Face Recognition Engine

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2020)

Abstract

With the advancement of Artificial Intelligence (AI), algorithms brings more fairness challenges in ethical, legal, psychological and social levels. People should start to face these challenges seriously in dealing with AI products and AI solutions. More and more companies start to recognize the importance of Diversity and Inclusion (D&I) due to AI algorithms and take corresponding actions. This paper introduces Lenovo AI’s Vision on D&I, specially, the efforts of mitigating algorithm bias in human face processing technology. Latest evaluation shows that Lenovo face recognition engine achieves better performance of racial fairness over competitors in terms of multiple metrics. In addition, it also presents post-processing strategy of improving fairness according to different considerations and criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7_910.1007/978-0-387-84858-7_9

    Book  MATH  Google Scholar 

  3. Muheidat, F., Tawalbeh, L.: Team based learning: the role of equity, diversity, and inclusion in team formation. In: 2018 Research on Equity and Sustained Participation in Engineering, Computing, and Technology (RESPECT), pp. 1–2 (2018)

    Google Scholar 

  4. Hespanhol, L., Davis, H., Fredericks, J., Caldwell, G.A., Hoggenmueller, M.: Digital outreach: designing technologies for diversity, participation and social inclusion, pp. 648–650, November 2017

    Google Scholar 

  5. Siau, K.: How can AI help to enhance diversity and inclusion? In: 25th Americas Conference on Information Systems, AMCIS, August 2019

    Google Scholar 

  6. Narayanan, A.: Translation tutorial: 21 fairness definitions and their politics. In: Conference on Fairness, Accountability, and Transparency (2018)

    Google Scholar 

  7. Kleinberg, J.M., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair determination of risk scores. CoRR, abs/1609.05807 (2016)

    Google Scholar 

  8. Friedler, S.A., Scheidegger, C., Venkatasubramanian, S., Choudhary, S., Hamilton, E.P., Roth, D.: A comparative study of fairness-enhancing interventions in machine learning. In: Proceedings of the Conference on Fairness, Accountability, and Transparency (2019)

    Google Scholar 

  9. Browne, K., Draper, J.: https://www.slideshare.net/KrishnaramKenthapadi/fairness-and-privacy-in-aiml-systems-187923831/

  10. Adebayo, J.A.: FairML: toolbox for diagnosing bias in predictive modeling. Master thesis, Massachusetts Institute of Technology (2016). https://github.com/adebayoj/fairml

  11. Bantilan, N.: Themis-ml: a fairness-aware machine learning interface for end-to-end discrimination discovery and mitigation. CoRR, abs/1710.06921 (2017)

    Google Scholar 

  12. Zehlike, M., Castillo, C., Bonchi, F., Hajian, S., Megahed, M.: Fairness measures: datasets and software for detecting algorithmic discrimination. http://fairness-measures.org/

  13. Zehlike, M., Castillo, C., Bonchi, F., Hajian, S., Megahed, M.: Fairness measures: datasets and software for detecting algorithmic discrimination. http://fairness-measures.org/

  14. Speicher, T., et al.: A unified approach to quantifying algorithmic unfairness: measuring individual & group unfairness via inequality indices. CoRR, abs/1807.00787 (2018)

    Google Scholar 

  15. https://community.ibm.com/HigherLogic/System/DownloadDocumentFile.ashx?DocumentFileKey=618c7917-8d2b-ca78-5ecc-2286486b9c69&forceDialog=0

  16. Alessandro, B., ONeil, C., Laatta, T.: Conscientious classification: a data scientists guide to discrimination-aware classification. Big Data 5, 120–134 (2017)

    Article  Google Scholar 

  17. Kamiran, F., Calders, T.: Data preprocessing techniques for classification without discrimination. Knowl. Inf. Syst. 33(1), 1–33 (2011)

    Article  Google Scholar 

  18. Calmon, F., Wei, D., Vinzamuri, B., Ramamurthy, K.N., Varshney, K.R.: Optimized pre-processing for discrimination prevention. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 3992–4001. Curran Associates Inc. (2017)

    Google Scholar 

  19. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York (2015)

    Google Scholar 

  20. Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. CoRR, abs/1801.07593 (2018)

    Google Scholar 

  21. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with prejudice remover regularizer. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 35–50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_3

    Chapter  Google Scholar 

  22. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. CoRR, abs/1610.02413 (2016)

    Google Scholar 

  23. Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., Weinberger, K.Q.: On fairness and calibration. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5680–5689. Curran Associates Inc. (2017)

    Google Scholar 

  24. Kamiran, F., Karim, A., Zhang, X.: Decision theory for discrimination-aware classification. In: 2012 IEEE 12th International Conference on Data Mining, pp. 924–929 (2012)

    Google Scholar 

  25. Wang, M., Deng, W., Hu, J., Tao, X., Huang, Y.: Racial faces in the wild: Reducing racial bias by information maximization adaptation network. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 692–702 (2019)

    Google Scholar 

  26. Face++ research toolkit. www.faceplusplus.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangzhou Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, S. et al. (2020). Algorithm Bias Detection and Mitigation in Lenovo Face Recognition Engine. In: Zhu, X., Zhang, M., Hong, Y., He, R. (eds) Natural Language Processing and Chinese Computing. NLPCC 2020. Lecture Notes in Computer Science(), vol 12431. Springer, Cham. https://doi.org/10.1007/978-3-030-60457-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60457-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60456-1

  • Online ISBN: 978-3-030-60457-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics