Skip to main content

Predicting Mechanical Properties Using Continuum Mechanics-Based Approach: Micro-mechanics and Finite Element Analysis

  • Chapter
  • First Online:
Theory and Modeling of Polymer Nanocomposites

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 310))

Abstract

The mechanical properties of nano-structured materials are important field of exploration in the fields of materials science and other engineering disciplines. Thorough understanding of underlying material structure and resulting properties require a variety of tools depending on the length scales of interest. This chapter reviews continuum mechanics-based techniques, with an emphasis on micro-scale modeling techniques: analytical and computational. In addition to micro-mechanics, different approaches to multiscale modeling are presented. With the appropriate choice of techniques, models can be bridged across multiple length scales leading to mechanistic understanding of the mechanics of materials. Some illustrative examples are also discussed that utilize the techniques presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.M. Odegard, Computational multiscale modeling—nanoscale to macroscale, in Comprehensive Composite Materials II, ed. by P.W.R. Beaumont, C.H. Zweben (Academic Press, 2018), pp. 28–51

    Google Scholar 

  2. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Pearson, New York, 2004)

    Google Scholar 

  3. R. Shankar, Principles of Quantum Mechanics, 2nd edn. (Plenum Press, New York, 2011)

    Google Scholar 

  4. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)

    Google Scholar 

  5. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic Press, London, 2002)

    Google Scholar 

  6. A.R. Leach, Molecular Modelling: Principles and Applications (Prentice Hall, New York, 2001)

    Google Scholar 

  7. N.L. Allinger et al., Molecular mechanics (MM3) calculations on conjugated hydrocarbons. J. Comput. Chem. 11, 868–895 (1990)

    Article  CAS  Google Scholar 

  8. N.L. Allinger, Y.H. Yuh, J.H. Lii, Molecular mechanics. The MM3 force field for hydrocarbons. J. Am. Chem. Soc. 111, 8551–8566 (1989)

    Google Scholar 

  9. J.H. Lii, N.L. Allinger, Molecular mechanics. The MM3 force field for hydrocarbons. 2. vibrational frequencies and thermodynamics. J. Am. Chem. Soc. 111, 8566–8575 (1989)

    Google Scholar 

  10. J.H. Lii, N.L. Allinger, Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals’ potentials and crystal data for aliphatic and aromatic hydrocarbons. J. Am. Chem. Soc. 111, 8576–8582 (1989)

    Google Scholar 

  11. W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 117, 11225–11236 (1996)

    Article  Google Scholar 

  12. G.A. Kaminsky et al., Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105, 6474–6487 (2001)

    Article  CAS  Google Scholar 

  13. H. Sun et al., Prediction of shear viscosities using periodic perturbation method and OPLS force field. Fluid Phase Equilib. 260(2), 212–217 (2007)

    Article  CAS  Google Scholar 

  14. P.K. Weiner, P.A. Kollman, AMBER—assisted model-building with energy refinement—a general program for modeling molecules and their interactions. J. Comput. Chem. 2(3), 287–303 (1981)

    Article  CAS  Google Scholar 

  15. A. Bandyopadhyay et al., Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polymer 52(11), 2445–2452 (2011)

    Article  CAS  Google Scholar 

  16. P.K. Valavala et al., Nonlinear multiscale modeling of polymer materials. Int. J. Solids Struct. 44(3–4), 1161–1179 (2007)

    Article  CAS  Google Scholar 

  17. P.K. Valavala et al., Multiscale modeling of polymer materials using a statistics-based micromechanics approach. Acta Mater. 57(2), 525–532 (2009)

    Article  CAS  Google Scholar 

  18. P.K. Valavala, G.M. Odegard, Modeling techniques for determination of mechanical properties of polymer nanocomposites. Rev. Adv. Mater. Sci. 9(1), 34–44 (2005)

    CAS  Google Scholar 

  19. P.K. Valavala, G.M. Odegard, E.C. Aifantis, Influence of representative volume element size on predicted elastic properties of polymer materials. Modell. Simul. Mater. Sci. Eng. 17(4), 045004 (2009)

    Article  CAS  Google Scholar 

  20. A. Bandyopadhyay, P.K. Valavala, G.M. Odegard, Multiscale modeling of epoxy-based composite materials, in SAMPE Fall Technical Conference, Wichita, KS (2009)

    Google Scholar 

  21. S.O. Nielsen et al., Coarse grain models and the computer simulation of soft materials. J. Phy.-Condensed Matter 16(15), R481–R512 (2004)

    Article  CAS  Google Scholar 

  22. T.C. Clancy, J. Hinkley, Coarse-Grained and Atomistic Modeling of Polyimides (National Aeronatics and Space Administration, 2004)

    Google Scholar 

  23. Z.P. Bažant, M. Jirásek, Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. 128(11), 1119–1149 (2002)

    Article  Google Scholar 

  24. E.C. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol.-Trans. ASME 106(4), 326–330 (1984)

    Article  CAS  Google Scholar 

  25. B.S. Altan, E.C. Aifantis, On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)

    Article  Google Scholar 

  26. A.C. Eringen, Microcontinuum Field Theories (Springer-Verlag, New York, 1999)

    Book  Google Scholar 

  27. A.C. Eringen, Nonlocal Continuum Field Theories (Springer-Verlag, New York, 2002)

    Google Scholar 

  28. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. Ser. A 241, 376–396 (1957)

    Article  Google Scholar 

  29. R. Hill, Theory of Mechancial Properties of Fibre-Strengthened Materials—I. Elastic Behavior. J. Mech. Phys. Solids 12, 199–212 (1964)

    Google Scholar 

  30. R. Hill, On constitutive macro-variables for heterogeneous solids at finite strain. Proc. R. Soc. Lond. A Math. Phys. Sci. 326(1565), 131–147 (1972)

    Google Scholar 

  31. J. Mandel, Plasticité Classique et Viscoplasticité, in CISM Lecture Notes (Springer, Udine, 1971)

    Google Scholar 

  32. S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials (North-Holland, 1993)

    Google Scholar 

  33. J. Qu, M. Cherkaoui, Fundamentals of Micromechanics of Solids (Wiley, 2006)

    Google Scholar 

  34. J. Yu Li, On micromechanics approximation for the effective thermoelastic moduli of multi-phase composite materials. Mech. Mater. 31, 149–159 (1999)

    Article  Google Scholar 

  35. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  36. Y. Benveniste, A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 6(2), 147–157 (1987)

    Article  Google Scholar 

  37. R.M. Christensen, H. Schantz, J. Shapiro, On the range of validity of teh Mori-Tanaka method. J. Mech. Phys. Solids 40, 69–73 (1992)

    Article  Google Scholar 

  38. R. Hill, A self-consistent mechanics of composites materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  39. B. Klusemann, B. Svendsen, Homogenization methods for multi-phase elastic composites: comparisons and benchmarks. Technische Mechanik 30(4), 374–386 (2010)

    Google Scholar 

  40. W. Voigt, Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abh. Kgl. Ges. Wiss. Göttingen, Math. Kl. 34, 3–51 (1887)

    Google Scholar 

  41. A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech. 9, 49–58 (1929)

    CAS  Google Scholar 

  42. Z. Hashin, The elastic moduli of hetergeneous materials. J. Appl. Mech. 29, 143–150 (1962)

    Article  CAS  Google Scholar 

  43. Z. Hashin, S. Shtrikman, A variational approach to the theory of elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963)

    Article  Google Scholar 

  44. E.J. Barbero, Introduction to Composite Materials Design (Taylor and Francis, Philadelphia, PA, 1999)

    Google Scholar 

  45. R.M. Christensen, Mechanics of Composite Materials (Dover Publications, Inc., Mineola, NY, 2005)

    Google Scholar 

  46. D. Hull, T.W. Clyne, An Introduction to Composite Materials (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  47. J. Aboudi, Mechanics of Composite Materials: A Unified Micromechancial Approach (Elsevier, Amsterdam, 1991)

    Google Scholar 

  48. J.N. Reddy, Mechanics of Laminated Composite Plates: Theory and Applications (CRC Press, Boca Raton, 1997)

    Google Scholar 

  49. C.T. Sun, et al., Comparative Evaluation of Failure Analysis Methods for Composite Laminates, F.A.A. U.S. Department of Transportation, Office of Aviation Research, Editor. 1996, U.S. Department of Transportation, Federal Aviation Administration

    Google Scholar 

  50. Z. Hashin, Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)

    Article  Google Scholar 

  51. Z. Hashin, A. Rotem, A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7(4), 448–464 (1973)

    Article  Google Scholar 

  52. A. De Luca, F. Caputo, A review on analytical failure criteria for composite materials. AIMS Mater. Sci. 4(5), 1165–1185 (2017)

    Article  Google Scholar 

  53. C.T. Sun, S.G. Zhou, Failure of quasi-isotropic composite laminates with free edges. J. Reinf. Plast. Compos. 7(6), 515–557 (1988)

    Article  CAS  Google Scholar 

  54. O.C. Zienkiewicz, The Finite Element Method in Engineering Science (McGraw Hill, London, 1971)

    Google Scholar 

  55. P.J. Blanco et al., Variational foundations and generalized unified theory of RVE-Based multiscale models. Arch. Comput. Methods Eng. 23(2), 191–253 (2014)

    Article  Google Scholar 

  56. F. Feyel, J.-L. Chaboche, FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183(3–4), 309–330 (2000)

    Article  Google Scholar 

  57. W.J. Drugan, J.R. Willis, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. J. Mech. Phys. Solids 44(4), 497–524 (1996)

    Article  CAS  Google Scholar 

  58. K. Alzebdeh et al., Fracture of random matrix-inclusion composites: Scale effects and statistics. Int. J. Solids Struct. 35(19), 2537–2566 (1998)

    Article  Google Scholar 

  59. M. Jiang et al., Scale and boundary conditions effects in elastic properties of random composites. Acta Mech. 148, 63–78 (2001)

    Article  Google Scholar 

  60. M. Ostoja-Starzewski, Microstructural randomness versus representative volume element in thermomechanics. J. Appl. Mech.-Trans. ASME 69(1), 25–35 (2002)

    Article  Google Scholar 

  61. M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials (Chapman & Hall/CRC Press, 2008)

    Google Scholar 

  62. Corp, S., ABAQUS FEA. 2014, Dassault Systèmes

    Google Scholar 

  63. engineering, e.-X., Digimat. 2015, MSC Software Corporation, Hexagon

    Google Scholar 

  64. M. Jiang, I. Jasiuk, M. Ostoja-Starzewski, Apparent elastic and elastoplastic behavior of periodic composites. Int. J. Solids Struct. 39, 199–212 (2002)

    Article  Google Scholar 

  65. M. Ostoja-Starzewski, Lattice models in micromechanics. Appl. Mech. Rev. 55(1), 35–60 (2002)

    Article  Google Scholar 

  66. S.I. Ranganathan, M. Ostoja-Starzewski, Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J. Mech. Phys. Solids 56(9), 2773–2791 (2008)

    Article  Google Scholar 

  67. S.I. Ranganathan, M. Ostoja-Starzewski, Scale-dependent homogenization of inelastic random polycrystals. J. Appl. Mech.-Trans. ASME 75(5) (2008)

    Google Scholar 

  68. S.I. Ranganathan, M. Ostoja-Starzewski, Mesoscale conductivity and scaling function in aggregates of cubic, trigonal, hexagonal, and tetragonal crystals. Phys. Rev. B 77(21) (2008)

    Google Scholar 

  69. J. Aboudi, S.M. Arnold, B.A. Bednarcyk, Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach (Elsevier Inc., New York, 2013)

    Google Scholar 

  70. G.M. Odegard et al., Equivalent-continuum modeling of nano-structured materials. Compos. Sci. Technol. 62(14), 1869–1880 (2002)

    Article  CAS  Google Scholar 

  71. W.K. Liu, E.G. Karpov, H.S. Park, Nano Mechanics and Materials: Theory, Multiscale Methods and Applications (Wiley, Hoboken, NJ, 2006)

    Google Scholar 

  72. G.M. Odegard, T.C. Clancy, T.S. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46(2), 553–562 (2005)

    Article  CAS  Google Scholar 

  73. F.W. Starr, T.B. Schrøder, S.C. Glotzer, Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 35(11), 4481–4492 (2002)

    Article  CAS  Google Scholar 

  74. D.A. Jesson, J.F. Watts, The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym. Rev. 52(3), 321–354 (2012)

    Article  CAS  Google Scholar 

  75. H.J. Sue, A.F. Yee, Study of fracture mechanisms of multiphase polymers using the double-notch four-point-bending method. J. Mater. Sci. 28(11), 2975–2980 (1993)

    Article  CAS  Google Scholar 

  76. T.L. Anderson, Fracture Mechanics : Fundamentals and Applications, 2nd edn. (Taylor & Francis, 2005)

    Google Scholar 

  77. R.E. Miller, E.B. Tadmor, A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Modell. Simul. Mater. Sci. Eng. 17(5), 053001 (2009)

    Article  CAS  Google Scholar 

  78. H.S. Park, W.K. Liu, An introduction and tutorial on multiple-scale analysis in solids. Comput. Methods Appl. Mech. Eng. 193(17–20), 1733–1772 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help from Valeriy Ginzburg, Mike Cheatham, Jason Brodil and Julia Woertink in preparing this manuscript. Pavan wants to express his gratitude to Dow Inc. for supporting this effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan K. Valavala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Valavala, P.K., Odegard, G.M. (2021). Predicting Mechanical Properties Using Continuum Mechanics-Based Approach: Micro-mechanics and Finite Element Analysis. In: Ginzburg, V.V., Hall, L.M. (eds) Theory and Modeling of Polymer Nanocomposites. Springer Series in Materials Science, vol 310. Springer, Cham. https://doi.org/10.1007/978-3-030-60443-1_8

Download citation

Publish with us

Policies and ethics