Skip to main content

PET Beyond Pictures

  • Chapter
  • First Online:
PET/CT and PET/MR in Melanoma and Sarcoma

Abstract

PET imaging data analysis provides crucial instruments for diagnosis and therapeutic assessment of many forms of cancer. The utility of simple statistical summaries of the metabolic volume and distribution of image intensities for both baseline prognosis and therapeutic response assessment is now well established and prompted the definition of PET-specific guidelines (PERCIST) for routine practice. Current methodologies however fail to exploit the complexity of such data effectively. A number of quantitative methodologies have been developed in recent years that capture different aspects of the PET uptake information. Converging efforts in the radiology community have led to the emergence of radiomics, which consists of high-throughput extraction of data-driven pseudo-markers and model-building based on intensive machine learning techniques, in order to build more effective prognostic models. In parallel, other forms of statistical analysis of the structural characteristics of the distribution of PET uptake are also developed, with the aim to provide complementary description in clinical terms. Both types of approaches can be considered and combined to form a more informed, patient-specific evaluation of risk and therapeutic assessment. In this chapter we describe these quantitation methodologies and illustrate them on clinical examples. We provide a high-level review of major methodological aspects of quantitative PET-based tumor characterization, highlight key components of the imaging data acquisition and post-processing chain that may influence such analyses, and discuss the role of artificial intelligence and machine learning frameworks in the context of sarcoma and melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joo Hyun O, Lodge MA, Wahl RL. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology. 2016;280(2):576–84.

    Article  Google Scholar 

  2. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.

    Article  PubMed  Google Scholar 

  3. Zwanenburg A, Abdalah MA, Apte A, Ashrafinia S, Beukinga J, Bogowicz M, et al. Results from the image biomarker standardisation initiative. Radiother Oncol. 2018;127:S543–S4.

    Article  Google Scholar 

  4. Gerstner ER, Zhang Z, Fink JR, Muzi M, Hanna L, Greco E, et al. ACRIN 6684: assessment of tumor hypoxia in newly diagnosed Glioblastoma Using 18F-FMISO PET and MRI. Clin Cancer Res. 2016;22(20):5079–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ratai EM, Zhang Z, Fink J, Muzi M, Hanna L, Greco E, et al. ACRIN 6684: multicenter, phase II assessment of tumor hypoxia in newly diagnosed glioblastoma using magnetic resonance spectroscopy. PLoS One. 2018;13(6):e0198548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wolsztynski E, O’Sullivan F, Keyes E, O’Sullivan J, Eary JF. Positron emission tomography-based assessment of metabolic gradient and other prognostic features in sarcoma. J Med Imaging (Bellingham). 2018;5(2):024502.

    Google Scholar 

  7. Russell SJ, Norvig P. Artificial intelligence: a modern approach. 3rd ed. Prentice Hall: Upper Saddle River; 2010.

    Google Scholar 

  8. Rodriguez-Ruiz A, Krupinski E, Mordang JJ, Schilling K, Heywang-Kobrunner SH, Sechopoulos I, et al. Detection of breast Cancer with mammography: effect of an artificial intelligence support system. Radiology. 2019;290(2):305–14.

    Article  PubMed  Google Scholar 

  9. Al-Nabhani KZ, Syed R, Michopoulou S, Alkalbani J, Afaq A, Panagiotidis E, et al. Qualitative and quantitative comparison of PET/CT and PET/MR imaging in clinical practice. J Nucl Med. 2014;55(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  10. Moses WW. Fundamental Limits of Spatial Resolution in PET. Nucl Instrum Methods Phys Res A. 2011;648(Supplement 1):S236–S40.

    Article  CAS  PubMed  Google Scholar 

  11. Mou T, Huang J, O’Sullivan F. The gamma characteristic of reconstructed PET images: implications for ROI analysis. IEEE Trans Med Imaging. 2018;37(5):1092–102.

    Article  PubMed  Google Scholar 

  12. Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48(6):932–45.

    Article  PubMed  Google Scholar 

  13. Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  14. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present... any future? Eur J Nucl Med Mol Imaging. 2017;44(1):151–65.

    Article  PubMed  Google Scholar 

  15. Yan J, Lim JC, Townsend DW. MRI-guided brain PET image filtering and partial volume correction. Phys Med Biol. 2015;60(3):961–76.

    Article  PubMed  Google Scholar 

  16. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60(6):801–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hasebe M, Yoshikawa K, Nishii R, Kawaguchi K, Kamada T, Hamada Y. Usefulness of (11)C-methionine-PET for predicting the efficacy of carbon ion radiation therapy for head and neck mucosal malignant melanoma. Int J Oral Maxillofac Surg. 2017;46(10):1220–8.

    Article  CAS  PubMed  Google Scholar 

  18. Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 2013;501(7467):355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eary JF, Conrad EU, O’Sullivan J, Hawkins DS, Schuetze SM, O’Sullivan F. Sarcoma mid-therapy [F-18]fluorodeoxyglucose positron emission tomography (FDG PET) and patient outcome. J Bone Joint Surg Am. 2014;96(2):152–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Grzywa TM, Paskal W, Wlodarski PK. Intratumor and intertumor heterogeneity in melanoma. Transl Oncol. 2017;10(6):956–75.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3(6):573–89.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buvat I, Orlhac F, Soussan M. Tumor texture analysis in PET: where do we stand? J Nucl Med. 2015;56(11):1642–4.

    Article  CAS  PubMed  Google Scholar 

  23. Soussan M, Orlhac F, Boubaya M, Zelek L, Ziol M, Eder V, et al. Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer. PLoS One. 2014;9(4):e94017.

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Sullivan F, Wolsztynski E, O’Sullivan J, Richards T, Conrad EU, Eary JF. A statistical modeling approach to the analysis of spatial patterns of FDG-PET uptake in human sarcoma. IEEE Trans Med Imaging. 2011;30(12):2059–71.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yancovitz M, Finelt N, Warycha MA, Christos PJ, Mazumdar M, Shapiro RL, et al. Role of radiologic imaging at the time of initial diagnosis of stage T1b-T3b melanoma. Cancer. 2007;110(5):1107–14.

    Article  PubMed  Google Scholar 

  26. Rajkumar S, Watson IR. Molecular characterisation of cutaneous melanoma: creating a framework for targeted and immune therapies. Br J Cancer. 2016;115(2):145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carlino MS, Saunders CA, Haydu LE, Menzies AM, Martin Curtis C Jr, Lebowitz PF, et al. (18)F-labelled fluorodeoxyglucose-positron emission tomography (FDG-PET) heterogeneity of response is prognostic in dabrafenib treated BRAF mutant metastatic melanoma. Eur J Cancer. 2013;49(2):395–402.

    Article  CAS  PubMed  Google Scholar 

  28. Mena E, Sanli Y, Marcus C, Subramaniam RM. Precision medicine and PET/computed tomography in melanoma. PET Clin. 2017;12(4):449–58.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fazal MI, Patel ME, Tye J, Gupta Y. The past, present and future role of artificial intelligence in imaging. Eur J Radiol. 2018;105:246–50.

    Article  PubMed  Google Scholar 

  30. Zhang Z, Chen P, McGough M, Xing F, Wang C, Bui M, et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat Mach Intell. 2019;1(5):236–45.

    Article  Google Scholar 

  31. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kahn CE Jr. Artificial intelligence in radiology: decision support systems. Radiographics. 1994;14(4):849–61.

    Article  PubMed  Google Scholar 

  33. Rodriguez-Ruiz A, Lang K, Gubern-Merida A, Broeders M, Gennaro G, Clauser P, et al. Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst. 2019;111(9):916–22.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Christ PF, Elshaer MEA, Ettlinger F, Tatavarty S, Bickel M, Bilic P, et al. Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields. arXiv e-prints [Internet]. October 1, 2016. Available from: https://ui.adsabs.harvard.edu/abs/2016arXiv161002177C.

  35. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017;35:18–31.

    Article  PubMed  Google Scholar 

  36. Savadjiev P, Chong J, Dohan A, Agnus V, Forghani R, Reinhold C, et al. Image-based biomarkers for solid tumor quantification. Eur Radiol. 2019;29(10):5431–40.

    Article  PubMed  Google Scholar 

  37. Berthon B, Evans M, Marshall C, Palaniappan N, Cole N, Jayaprakasam V, et al. Head and neck target delineation using a novel PET automatic segmentation algorithm. Radiother Oncol. 2017;122(2):242–7.

    Article  CAS  PubMed  Google Scholar 

  38. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv e-prints [Internet]. November 1, 2018. Available from: https://ui.adsabs.harvard.edu/abs/2018arXiv181102629B.

  39. Pirotte B, Goldman S, Massager N, David P, Wikler D, Vandesteene A, et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med. 2004;45(8):1293–8.

    CAS  PubMed  Google Scholar 

  40. Schwartz LH, Litiere S, de Vries E, Ford R, Gwyther S, Mandrekar S, et al. RECIST 1.1-update and clarification: from the RECIST committee. Eur J Cancer. 2016;62:132–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3(7–8):1157–82.

    Google Scholar 

  43. Ambroise C, McLachlan GJ. Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci U S A. 2002;99(10):6562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009. xxii, 745 p.

    Book  Google Scholar 

  45. Magalhaes C, Mendes J, Vardasca R. The role of AI classifiers in skin cancer images. Skin Res Technol. 2019;25(5):750–7.

    Article  PubMed  Google Scholar 

  46. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhattacharya A, Young A, Wong A, Stalling S, Wei M, Hadley D. Precision diagnosis of melanoma and other skin lesions from digital images. AMIA Jt Summits Transl Sci Proc. 2017;2017:220–6.

    PubMed  PubMed Central  Google Scholar 

  48. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Corrigendum: dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;546(7660):686.

    Article  CAS  PubMed  Google Scholar 

  49. Gareau DS, Correa da Rosa J, Yagerman S, Carucci JA, Gulati N, Hueto F, et al. Digital imaging biomarkers feed machine learning for melanoma screening. Exp Dermatol. 2017;26(7):615–8.

    Article  CAS  PubMed  Google Scholar 

  50. Dreiseitl S, Ohno-Machado L, Kittler H, Vinterbo S, Billhardt H, Binder M. A comparison of machine learning methods for the diagnosis of pigmented skin lesions. J Biomed Inform. 2001;34(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  51. Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180–91.

    Article  CAS  PubMed  Google Scholar 

  52. Giesel FL, Schneider F, Kratochwil C, Rath D, Moltz J, Holland-Letz T, et al. Correlation between SUVmax and CT radiomic analysis using lymph node density in PET/CT-based lymph node staging. J Nucl Med. 2017;58(2):282–7.

    Article  CAS  PubMed  Google Scholar 

  53. Kniep HC, Madesta F, Schneider T, Hanning U, Schonfeld MH, Schon G, et al. Radiomics of brain MRI: utility in prediction of metastatic tumor type. Radiology. 2019;290(2):479–87.

    Article  PubMed  Google Scholar 

  54. Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60(14):5471–96.

    Article  CAS  PubMed  Google Scholar 

  55. Corino VDA, Montin E, Messina A, Casali PG, Gronchi A, Marchiano A, et al. Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions. J Magn Reson Imaging. 2018;47(3):829–40.

    Article  PubMed  Google Scholar 

  56. Wu Y, Xu L, Yang P, Lin N, Huang X, Pan W, et al. Survival prediction in high-grade osteosarcoma using radiomics of diagnostic computed tomography. EBioMedicine. 2018;34:27–34.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. Author correction: end-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(8):1319.

    Article  CAS  PubMed  Google Scholar 

  58. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faivre-Finn C, et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2018;29(Supplement_4):iv192–237.

    Article  CAS  PubMed  Google Scholar 

  59. Chetty IJ, Martel MK, Jaffray DA, Benedict SH, Hahn SM, Berbeco R, et al. Technology for innovation in radiation oncology. Int J Radiat Oncol Biol Phys. 2015;93(3):485–92.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Veit-Haibach P, Kuhn FP, Wiesinger F, Delso G, von Schulthess G. PET–MR imaging using a tri-modality PET/CT–MR system with a dedicated shuttle in clinical routine. MAGMA. 2013;26(1):25–35.

    Article  PubMed  Google Scholar 

  61. Kircher MF, Hricak H, Larson SM. Molecular imaging for personalized cancer care. Mol Oncol. 2012;6(2):182–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vallieres M, Zwanenburg A, Badic B, Cheze Le Rest C, Visvikis D, Hatt M. Responsible radiomics research for faster clinical translation. J Nucl Med. 2018;59(2):189–93.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Asselin M-C, O’Connor JPB, Boellaard R, Thacker NA, Jackson A. Quantifying heterogeneity in human tumours using MRI and PET. Eur J Cancer. 2012;48(4):447–55.

    Article  PubMed  Google Scholar 

  64. Muzi M, O’Sullivan F, Mankoff DA, Doot RK, Pierce LA, Kurland BF, et al. Quantitative assessment of dynamic PET imaging data in cancer imaging. Magn Reson Imaging. 2012;30(9):1203–15.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Wolsztynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wolsztynski, E., Eary, J.F. (2021). PET Beyond Pictures. In: Khandani, A.H. (eds) PET/CT and PET/MR in Melanoma and Sarcoma. Springer, Cham. https://doi.org/10.1007/978-3-030-60429-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60429-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60428-8

  • Online ISBN: 978-3-030-60429-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics