Skip to main content

Improved Brain Segmentation Using Pixel Separation and Additional Segmentation Features

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2020)

Abstract

Brain segmentation is key to brain structure evaluation for disease diagnosis and treatment. Much research has been invested to study brain segmentation. However, prior research has not considered separating actual brain pixels from the background of brain images. Not performing such separation may (a) distort brain segmentation models and (b) introduce overhead to the modeling performance. In this paper, we improve the performance of brain segmentation using 3D, fully Convolutional Neural Network (CNN) models. We use (i) infant and adult datasets, (ii) a multi-instance loss method to separate actual brain pixels from the background and (iii) Gabor filter banks and K-means clustering to provide additional segmentation features. Our model obtains dice coefficients of \(87.4\%\)\(94.1\%\) (i.e., an improvement of up to 11% to the results of five state-of-the-art models). Unlike prior studies, we consult experts in medical imaging to evaluate our segmentation results. We observe that our results are fairly close to the manual reference. Moreover, we observe that our model is 1.2x–2.6x faster than prior models. We conclude that our model is more efficient and accurate in practice for both infant and adult brain segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://iseg2017.web.unc.edu.

  2. 2.

    https://mrbrains13.isi.uu.nl/results.php.

References

  1. Visser, E., et al.: Automatic segmentation of the striatum and globus pallidus using mist: multimodal image segmentation tool. NeuroImage 125, 479–497 (2016)

    Article  Google Scholar 

  2. Bao, S., Chung, A.C.: Multi-scale structured CNN with label consistency for brain MR image segmentation. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 6(1), 113–117 (2018)

    Article  Google Scholar 

  3. Chen, H., Dou, Q., Yu, L., Qin, J., Heng, P.A.: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170, 446–455 (2018)

    Article  Google Scholar 

  4. Wang, L., et al.: Benchmark on automatic 6-month-old infant brain segmentation algorithms: the ISEG-challenge. IEEE Trans. Med. Imaging. 38(9), 2219–2230 (2019)

    Article  Google Scholar 

  5. Bernal, J., et al.: Deep convolutional neural networks for brain image analysis on magnetic resonance imaging. Artif. Intell. Med. 95, 64–81 (2017)

    Article  Google Scholar 

  6. Dolz, J., Desrosiers, C., Ayed, I.B.: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study. NeuroImage 170, 456–470 (2018)

    Article  Google Scholar 

  7. Badrinarayanan, V., Kendall, A., Segnet, R.: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  8. Fechter, T., Adebahr, S., Baltas, D., Ayed, I.B., Desrosiers, C., Dolz, J.: Esophagus segmentation in CT via 3D fully convolutional neural network and random walk. Med. Phys. 44(12), 6341–6352 (2017)

    Article  Google Scholar 

  9. de Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2015)

    Google Scholar 

  10. Moeskops, P., Viergever, M.A., Mendrik, A.M., de Vries, L.S., Benders, M.J., Isgum, I.: Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 35(5), 1252–1261 (2016)

    Article  Google Scholar 

  11. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: The Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv. 1502.03167 (2017)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Foulds, J., Frank, E.: A review of multi-instance learning assumptions. Knowl. Eng. Rev. 25(1), 1–25 (2010)

    Article  Google Scholar 

  16. Deng, X., Feng, S., Guo, P., Yin, Q.: Fast image recognition with Gabor filter and pseudoinverse learning autoencoders. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11306, pp. 501–511. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04224-0_43

    Chapter  Google Scholar 

  17. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  18. Zhang, W., et al.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108, 214–224 (2015)

    Article  Google Scholar 

  19. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  20. Nie, D., Wang, L., Gao, Y., Shen, D.: Fully convolutional networks for multi-modality isointense infant brain image segmentation. In: IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1342–1345 (2016)

    Google Scholar 

  21. Mahbod, A., Chowdhury, M., Smedby, O., Wang, C.: Automatic brain segmentation using artificial neural networks with shape context. Pattern Recogn. Lett. 101, 74–79 (2018)

    Article  Google Scholar 

  22. Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional with application to fast biomedical volumetric image segmentation. CoRR abs/1506.07452. arXiv:1506.07452 (2018)

  23. Hitesh, A., Gupta, A., Raju, A.: Non-linear dimension reduction of Gabor features for noise-robust ASR. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1715–1719 (2014)

    Google Scholar 

  24. Jonathan, L., Evan, S., Trevor, D.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  25. Xavier, G., Yoshua, B.: Understanding the difficulty of training deep feedforward neural networks. In: The Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Tao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khaled, A., Own, CM., Tao, W., Ghaleb, T.A. (2020). Improved Brain Segmentation Using Pixel Separation and Additional Segmentation Features. In: Wang, X., Zhang, R., Lee, YK., Sun, L., Moon, YS. (eds) Web and Big Data. APWeb-WAIM 2020. Lecture Notes in Computer Science(), vol 12318. Springer, Cham. https://doi.org/10.1007/978-3-030-60290-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60290-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60289-5

  • Online ISBN: 978-3-030-60290-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics