Skip to main content

Blockchain Meets DAG: A BlockDAG Consensus Mechanism

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2020)

Abstract

With the advent of the blockchain technology, low throughput and scalability have gradually become technical bottlenecks. A DAG (Directed Acyclic Graph)-based blockchain system is deemed to be a potential solution to addressing both issues. However, constructing consensus protocol to meet the requirement of the consistency in a networked environment is an unsolved challenge. In this paper, we propose a novel DAG-oriented consensus mechanism. Specifically, our approach sorts and merges original blocks from a DAG structure and re-construct a single-chain-based blockchain system; hence, consensus in DAG can be achieved on new formed blocks through running the proposed global ordering scheme and block mergence operations. Blockchain-related functions can be retrieved from splitting merged blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartoletti, M., Zunino, R.: BitML: a calculus for bitcoin smart contracts. In: ACM SIGSAC Conference on CCS, Toronto, Canada, pp. 83–100 (2018)

    Google Scholar 

  2. Benčić, F., Žarko, I.: Distributed ledger technology: blockchain compared to directed acyclic graph. In: 38th ICDCS, Vienna, Austria, pp. 1569–1570. IEEE (2018)

    Google Scholar 

  3. Dinh, T., Liu, R., Zhang, M., et al.: Untangling blockchain: a data processing view of blockchain systems. IEEE TKDE 30(7), 1366–1385 (2018)

    Google Scholar 

  4. Gai, K., Choo, K., Qiu, M., Zhu, L.: Privacy-preserving content-oriented wireless communication in internet-of-things. IEEE IoT J. 5(4), 3059–3067 (2018)

    Google Scholar 

  5. Gai, K., Guo, J., Zhu, L., Yu, S.: Blockchain meets cloud computing: a survey. IEEE Commun. Surv. Tutorials PP(99), 1 (2020)

    Google Scholar 

  6. Gai, K., Wu, Y., Zhu, L., Qiu, M., Shen, M.: Privacy-preserving energy trading using consortium blockchain in smart grid. IEEE TII 15(6), 3548–3558 (2019)

    Google Scholar 

  7. Gai, K., et al.: Permissioned blockchain and edge computing empowered privacy-preserving smart grid networks. IEEE IoT J. 6(5), 7992–8004 (2019)

    Google Scholar 

  8. Guo, J., Gai, K., Zhu, L., Zhang, Z.: An approach of secure two-way-pegged multi-sidechain. In: Wen, S., Zomaya, A., Yang, L.T. (eds.) ICA3PP 2019. LNCS, vol. 11945, pp. 551–564. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38961-1_47

    Chapter  Google Scholar 

  9. Kosba, A., et al.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: S & P, San Jose, CA, USA, pp. 839–858. IEEE (2016)

    Google Scholar 

  10. Lerner, S.: DagCoin: a cryptocurrency without blocks. White paper (2015)

    Google Scholar 

  11. Lewenberg, Y., Sompolinsky, Y., Zohar, A.: Inclusive block chain protocols. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 528–547. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7_33

    Chapter  Google Scholar 

  12. Wan, Z., Cai, M., Lin, X., Yang, J.: Blockchain federation for complex distributed applications. In: Joshi, J., Nepal, S., Zhang, Q., Zhang, L.-J. (eds.) ICBC 2019. LNCS, vol. 11521, pp. 112–125. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23404-1_8

    Chapter  Google Scholar 

  13. Xu, C., Wang, K., et al.: Making big data open in edges: a resource-efficient blockchain-based approach. IEEE TPDS 30(4), 870–882 (2018)

    MathSciNet  Google Scholar 

  14. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: scaling blockchain via full sharding. In: ACM SIGSAC Conference on CCS, Toronto, Canada, pp. 931–948 (2018)

    Google Scholar 

  15. Zander, M., Waite, T., Harz, D.: DAGsim: simulation of DAG-based distributed ledger protocols. ACM SIGMETRICS PER 46(3), 118–121 (2019)

    Article  Google Scholar 

  16. Zhu, L., Wu, Y., Gai, K., Choo, K.: Controllable and trustworthy blockchain-based cloud data management. Future Gener. Comput. Syst. 91, 527–535 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work is partially supported by Natural Science Foundation of Beijing Municipality (Grant No. 4202068), National Natural Science Foundation of China (Grant No. 61972034), Natural Science Foundation of Shandong Province (Grant No. ZR2019ZD10), Guangxi Key Laboratory of Cryptography and Information Security (No. GCIS201803), Henan Key Laboratory of Network Cryptography Technology (Grant No. LNCT2019-A08), Beijing Institute of Technology Research Fund Program for Young Scholars (Dr. Keke Gai).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keke Gai or Liehuang Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gai, K., Hu, Z., Zhu, L., Wang, R., Zhang, Z. (2020). Blockchain Meets DAG: A BlockDAG Consensus Mechanism. In: Qiu, M. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science(), vol 12454. Springer, Cham. https://doi.org/10.1007/978-3-030-60248-2_8

Download citation

Publish with us

Policies and ethics