Skip to main content

Clustering by Unified Principal Component Analysis and Fuzzy C-Means with Sparsity Constraint

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2020)

Abstract

For clustering high-dimensional data, most of the state-of-the-art algorithms often extract principal component beforehand, and then conduct a concrete clustering method. However, the two-stage strategy may deviate from assignments by directly optimizing the unified objective function. Different from the traditional methods, we propose a novel method referred to as clustering by unified principal component analysis and fuzzy c-means (UPF) for clustering high-dimensional data. Our model can explore underlying clustering structure in low-dimensional space and finish clustering simultaneously. In particular, we impose a L0-norm constraint on the membership matrix to make the matrix more sparse. To solve the model, we propose an effective iterative optimization algorithm. Extensive experiments on several benchmark data sets in comparison with two-stage algorithms are conducted to validate effectiveness of the proposed method. The experiments results demonstrate that the performance of our proposed method is superiority.

Submit to ICA3PP 2020 Special Session on Artificial Intelligence and Security (AIS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)

    Article  Google Scholar 

  2. Wang, L., Pan, C.: Robust level set image segmentation via a local correntropy-based KMeans clustering. Pattern Recogn. 47(5), 1917–1925 (2014)

    Article  Google Scholar 

  3. Gong, M., Liang, Y., Shi, J., Ma, W., Ma, J.: Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573–584 (2013)

    Article  MathSciNet  Google Scholar 

  4. Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability (1967)

    Google Scholar 

  5. Arthur, D., Vassilvitskii, S.: KMeans++: the advantages of careful seeding. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (2007)

    Google Scholar 

  6. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient KMeans clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  7. Frahling, G., Sohler, C.: A fast K-means implementation using coresets. Int. J. Comput. Geom. Appl. 18(6), 605–625 (2008)

    Article  MathSciNet  Google Scholar 

  8. Elkan, C.: Using the triangle inequality to accelerate KMeans. In: Proceedings of the ICML (2003)

    Google Scholar 

  9. Huang, Z.: Extensions to the KMeans algorithm for clustering large data sets with categorical values. Data Min. Knowl. Disc. 2(3), 283–304 (1998)

    Article  Google Scholar 

  10. Huang, Z., Ng, M.K.: A fuzzy k-modes algorithm for clustering categorical data. IEEE Trans. Fuzzy Syst. 7(4), 446–452 (1999)

    Article  Google Scholar 

  11. Huang, J.Z., Ng, M.K., Rong, H., Li, Z.: Automated variable weighting in K-means type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)

    Article  Google Scholar 

  12. Li, M.J., Ng, M.K., Cheung, Y., Huang, J.Z.: Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters. IEEE Trans. Knowl. Data Eng. 20(11), 1519–1534 (2008)

    Article  Google Scholar 

  13. Yi, D., Xian, F.: Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing 188, 233–238 (2015)

    Google Scholar 

  14. Aparajeeta, J., Nanda, P.K., Das, N.: Modified possibilistic fuzzy c-means algorithms for segmentation of magnetic resonance image. Appl. Soft Comput. 41, 104–119 (2016)

    Article  Google Scholar 

  15. Adhikari, S.K., Sing, J.K., Basu, D.K., Nasipuri, M.: Conditional spatial fuzzy c-means clustering algorithm with application in MRI image segmentation. Adv. Intell. Syst. Comput. 340, 539–547 (2015)

    Google Scholar 

  16. Askari, S., Montazerin, N., Zarandi, M.H.F.: Generalized possibilistic fuzzy c-means with novel cluster validity indices for clustering noisy data. Appl. Soft Comput. 53, 262–283 (2017)

    Article  Google Scholar 

  17. Svante, W., Kim, E., Paul, G.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2, 37–52 (1987)

    Article  Google Scholar 

  18. He, X., Niyogi, P.: Locality preserving projections. In: Proceedings of the NIPS (2003)

    Google Scholar 

  19. Cai, D., He, X., Han, J., Zhang, H.-J.: Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 15(11), 3608–3614 (2006). A Publication of the IEEE Signal Processing Society

    Article  Google Scholar 

  20. Nie, F., Wei, Z., Li, X.: Unsupervised feature selection with structured graph optimization. In: Proceedings of the 13th AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  21. Welling, M.: Fisher linear discriminant analysis. Department of Computer Science, University of Toronto. (2005)

    Google Scholar 

  22. Nie, F., Wang, X., Huang, H.: Clustering and projected clustering with adaptive neighbors. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2014)

    Google Scholar 

  23. Chang, X., Yang, Y.: Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Trans. Neural Netw. Learn. Syst. 28, 2294–2305 (2016)

    Article  MathSciNet  Google Scholar 

  24. Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural Parallel Sci. Comput. 11(4), 351–368 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the 2nd IEEE Workshop on Applications of Computer Vision (1994)

    Google Scholar 

  26. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. Yale University New Haven United States, Technical report (1997)

    Google Scholar 

Download references

Acknowledgements

The work was partial supported by National Natural Science Foundations of China (61962012), Xing-Long scholar project of Lanzhou University of Finance and Economics, and Gansu Provincial Institutions of Higher Learning Innovation Ability Promotion Project (2019B − 97).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiping Nie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Shi, Q., Yang, Z., Nie, F. (2020). Clustering by Unified Principal Component Analysis and Fuzzy C-Means with Sparsity Constraint. In: Qiu, M. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2020. Lecture Notes in Computer Science(), vol 12453. Springer, Cham. https://doi.org/10.1007/978-3-030-60239-0_23

Download citation

Publish with us

Policies and ethics