Skip to main content

Gas Vesicles of Archaea and Bacteria

  • Chapter
  • First Online:
Bacterial Organelles and Organelle-like Inclusions

Part of the book series: Microbiology Monographs ((MICROMONO,volume 34))

  • 666 Accesses

Abstract

Gas vesicles are hollow nanostructures of spindle or cylinder shape produced by cyanobacteria, some heterotrophic bacteria as well as archaea. The possession of gas vesicles enables aquatic microbes to avoid sinking and to maintain a certain position in the water column; some of the gas-vesiculate strains even float at the surface. The rigid gas vesicle wall is formed solely of protein and freely permeable to gas molecules. The inner surface of the wall is hydrophobic, and surface tension presumably prevents the formation of water droplets inside. Major component is the small and hydrophobic GvpA that forms 4.6-nm-wide ribs running perpendicular to the long axis of the gas vesicle. The wall is stabilized by the second structural protein, GvpC, attached to the exterior surface. An in silico structure of GvpA is available and has been tested by amino acid substitutions to deduce sequence positions essential to form a gas-filled vesicle. Additional proteins are required for gas vesicle formation, and the gvp gene cluster involved has been investigated in haloarchaea, cyanobacteria, Serratia, Bacillus and Streptomyces. Special applications of gas vesicles in biomedical research and clinical diagnostics are their usage as effective antigen-presentation systems, or as novel reporters in acoustic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andar A, Karan R, Recher W, DasSarma P, Hedrich W, Stinchcomb A et al (2017) Microneedle-assisted skin permeation by non-toxic bioengineerable gas vesicle nanoparticles. Mol Pharm 14:953–958. https://doi.org/10.1021/acs.molpharmaceut.6b00859

    Article  CAS  PubMed  Google Scholar 

  • Archer D, King N (1984) Isolation of gas vesicles from Methanosarcina barkeri. J Gen Microbiol 30:167–172

    Article  Google Scholar 

  • Balakrishnan A, DasSarma P, Bhattacharjee O, Kim J, DasSarma S, Chakravortty D (2016) Halobacterial nano vesicles displaying murine bactericidal permeability-increasing protein rescue mice from lethal endotoxic shock. Sci Rep 6:33679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer M, Marschaus L, Reuff M, Besche V, Sartorius-Neef S, Pfeifer F (2008) Overlapping activator sequences determined fort wo oppositely oriented promoters in halophilic archaea. Nucleic Acids Res 36:598–606

    Article  CAS  PubMed  Google Scholar 

  • Beard S, Handley B, Hayes PK, Walsby AE (1999) The diversity of gas vesicle genes in Planktothrix rubescens from Lake Zurich. Microbiol 145:2757–2768

    Article  CAS  Google Scholar 

  • Beard S, Davis P, Iglesias-Rodriguez D, Skulberg O, Walsby AE (2000) Gas vesicle genes in Planktothrix spp. from Nordic lakes: strains with weak gas vesicles possess a longer variant of GvpC. Microbiol 146:2009–2018

    Article  CAS  Google Scholar 

  • Beard S, Handley B, Walsby AE (2002) Spontaneous mutations in gas vesicle genes of Planktothrix spp. affect gas vesicle production and critical pressure. FEMS Microbiol Lett 215:189–195

    Article  CAS  PubMed  Google Scholar 

  • Belenky M, Meyers R, Herzfeld J (2004) Subunit structure of gas vesicles: a MALDI-TOF mass spectrometry study. Biophys J 86:499–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell SD, Jackson S (1998) Transcription and translation in Archaea: a mosaic of eukaryal and bacterial features. Trends in Microbiol 6:222–228

    Article  CAS  Google Scholar 

  • Bentley S, Chater K, Cerdeno-Tárraga A, Challis G, Thompson N, James K et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Blaurock A, Walsby AE (1976) Crystalline structure of gas vesicle wall from Anabaena flos-aquae. J Mol Biol 105:183–199

    Article  CAS  PubMed  Google Scholar 

  • Blaurock A, Wober W (1976) Structure of wall of Halobacterium halobium gas vesicles. J Mol Biol 106:871–888

    Article  CAS  PubMed  Google Scholar 

  • Bleiholder A, Frommherz R, Teufel K, Pfeifer F (2012) Expression of multiple tfb genes in different Halobacterium salinarum strains and interaction of TFB with transcriptional activator GvpE. Arch Microbiol 194:269–279

    Article  CAS  PubMed  Google Scholar 

  • Bolhuis H, te Poele EM, Rodriguez-Valera F (2004) Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 6:1287–1291

    Article  PubMed  Google Scholar 

  • Born J, Pfeifer F (2019) Improved GFP variants to study gene expression in haloarchaea. Front Microbiol 10:1200. https://doi.org/10.3389/fmicb.2019.01200

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourdeau R, Lee-Gosselin A, Lakshmanan A, Farhadi A, Kumar S, Nety S, Shapiro MG (2018) Acoustic reporter genes for noninvasive imaging of microbes in mammalian hosts. Nature 553(7686):86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen C, Jensen T (1965) Blue-green algae: fine structure of the gas vacuoles. Science 147:146–152

    Article  Google Scholar 

  • Bright D, Walsby AE (1999) The relationship between critical pressure and width of gas vesicles in isolates of Planktothrix rubescens from Lake Zurich. Microbiol 145:2769–2775

    Article  CAS  Google Scholar 

  • Buchholz B, Hayes PK, Walsby AE (1993) The distribution of the outer gas vesicle protein, GvpC, on the Anabaena gas vesicle, and its ratio to GvpA. J Gen Microbiol 139:2353–2363

    Article  CAS  PubMed  Google Scholar 

  • Burns D, Camakaris H, Janssen P, Dyall-Smith M (2004) Cultivation of Walsby's square haloarchaeon. FEMS Microbiol Lett 238:469–473

    CAS  PubMed  Google Scholar 

  • Cherin E, Malis J, Bourdeau R, Yin M, Kochmann D, Foster F, Shapiro MG (2017) Acoustic behavior of Halobacterium salinarum gas vesicles in the high frequency range: experiments and modelling. Ultrasound Med Biol 43(5):1016–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Childs T, Webley W (2012) In vitro assessment of halobacterial gas vesicles as a Chlamydia vaccine display and delivery system. Vaccine 30:5942–5948

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Walsby AE (1978) The occurrence of gas vacuolate bacteria in lakes. Arch Microbiol 118:223–228

    Article  Google Scholar 

  • Cui H, Gao X, Li X, Xu X, Zhou Y, Liu H, Zhou P (2010) Haloplanus vescus sp nov, an extremely halophilic archaea from a marine solar saltern, and emended description of the genus Haloplanus. Int J Syst Evol Microbiol 60:1824–1827

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Gao X, Yang Y, Xu X (2011) Haloplanus aerogenes sp nov, an extremely halophilic archaeon from a marine solar saltern. Int J Syst Evol Microbiol 61:965–968

    Article  CAS  PubMed  Google Scholar 

  • Damerval T, Houmard J, Guglielmi G, Csiszar K, Tandeau de Marsac N (1987) A developmentally regulated gvpABC operon is involved in the formation of gas vesicles in the cyanobacterium Calothrix-7601. Gene 54:83–92

    Article  CAS  PubMed  Google Scholar 

  • Damerval T, Castets AM, Guglielmi G, Houmard J, Tandeau de Marsac N (1991) Gas vesicle synthesis in the cyanobacterium Pseudoanabaena sp.: occurrence of a single photoregulated gene. Mol Microbiol 5:657–664

    Google Scholar 

  • DasSarma S, Damerval T, Jones J, Tandeau de Marsac N (1987) A plasmid-encoded gas vesicle protein gene in a halophilic archaebacterium. Mol Microbiol 1:365–370

    Article  CAS  PubMed  Google Scholar 

  • DasSarma S, Halladay J, Jones J, Donovan J, Giannasca P, Tandeau de Marsac N (1988) High-frequency mutations in a plasmid-encoded gas vesicle gene in Halobacterium halobium. Proc Natl Acad Sci U S A 85:6861–6865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DasSarma P, Zamora R, Müller J, DasSarma S (2012) Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitation. J Bacteriol 194:5530–5537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DasSarma P, Negi V, Balakrishnan A, Karan R, Barnes S, Ekulona F, Chakravortty D, DasSarma S (2014) Haloarchaeal gas vesicle nanoparticles displaying Salmonella SopB antigen reduce bacterial burden when administered with live attenuated bacteria. Vaccine 32:4543–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunton P, Walsby AE (2005) The diameter and critical collapse pressure of gas vesicles in Microcystis are correlated with GvpCs of different length. FEMS Microbiol Let 247:37–43

    Article  CAS  Google Scholar 

  • Dutta S, DasSarma P, DasSarma S, Jarori G (2015) Immunogenicity and protective potential of a Plasmodium spp. enolase peptide displayed on archaeal gas vesicle nanoparticles. Malaria J 4:406

    Article  CAS  Google Scholar 

  • Elvi Bardavid R, Mana L, Oren A (2007) Haloplanus natans gen. Nov., sp. nov., an extremely halophilic gas-vacuolate archaeon from Dead Sea-Red-Sea water mixtures in experimental mesocosms. Int J Syst Evol Microbiol 57:780–783

    Article  CAS  Google Scholar 

  • Englert C, Pfeifer F (1993) Analysis of gas vesicle gene expression in Haloferax mediterranei reveals that GvpA and GvpC are both gas vesicle structural proteins. J Biol Chem 268:9329–9336

    CAS  PubMed  Google Scholar 

  • Englert C, Horne M, Pfeifer F (1990) Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol Gen Genet 222:225–232

    Article  CAS  PubMed  Google Scholar 

  • Englert C, Krüger K, Offner S, Pfeifer F (1992a) Three different but related gene clusters encoding gas vesicles in halophilic Archaea. J Mol Biol 227:586–592

    Article  CAS  PubMed  Google Scholar 

  • Englert C, Wanner G, Pfeifer F (1992b) Functional analysis of the gas vesicle gene cluster of the halophilic Archaeon Haloferax mediterranei defines the vac-region boundary and suggests a regulatory role for the GvpD gene or its product. Mol Microbiol 6:3543–3550

    Article  CAS  PubMed  Google Scholar 

  • Ezzeldin H, Klaus J, Solares S (2012) Modeling of the major gas vesicle protein, GvpA: from protein sequence to vesicle wall structure. J Struct Biol 179:18–28

    Article  CAS  PubMed  Google Scholar 

  • Farhadi A, Ho G, Kunth M, Ling B, Lakshmanan A, Lu G, Bourdeau R, Schröder L, Shapiro MG (2018) Recombinantly expressed gas vesicles as nanoscale contrast agents for ultrasound and hyperpolarized MRI. AICHE J 64(8):2927–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Zhu T, Xu M, Wang S, Xu X, Kong R (2016) pH-dependent gas vesicle formation in Microcystis. FEBS Let 590:3195–3201

    Article  CAS  Google Scholar 

  • Gosink J, Herwig R, Staley J (1997) Octadecabacter arcticus gen nov, sp nov, and O. antarcticus, sp nov, nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365

    Article  Google Scholar 

  • Hayes PK, Powell R (1995) The gvpA/C cluster of Anabaena-flos-aquae has multiple copies of a gene encoding GvpA. Arch Microbiol 164:50–57

    Article  CAS  PubMed  Google Scholar 

  • Hayes PK, Lazarus C, Bees A, Walker J, Walsby AE (1988) The protein encoded by GvpC is a minor component of gas vesicles isolated from the cyanobacteria Anabaena-flos-aquae and Microcystis sp. Mol Microbiol 2:545–552

    Article  CAS  PubMed  Google Scholar 

  • Hayes PK, Buchholz B, Walsby AE (1992) Gas vesicles are strengthened by the outer-surface protein, GvpC. Arch Microbiol 157:229–234

    Article  CAS  PubMed  Google Scholar 

  • Hechler T, Pfeifer F (2009) Anaerobiosis inhibits gas vesicle formation in halophilic archaea. Mol Microbiol 71:13245

    Article  CAS  Google Scholar 

  • Hofacker A, Schmitz K, Cichonczyk A, Sartorius-Neef S, Pfeifer F (2004) GvpE- and GvpD-mediated transcription regulation of the p-gvp genes encoding gas vesicles in Halobacterium salinarum. Microbiol 150:1829–1838

    Article  CAS  Google Scholar 

  • Horne M, Englert C, Pfeifer F (1988) Two genes encoding gas vacuole proteins in Halobacterium halobium. Mol Gen Genet 213:459–464

    Article  CAS  PubMed  Google Scholar 

  • Horne M, Englert C, Wimmer C, Pfeifer F (1991) A DNA region of 9 kbp contains all genes necessary for gas vesicle synthesis in halophilic archaebacteria. Mol Microbiol 5:1159–1174

    Article  CAS  PubMed  Google Scholar 

  • Houwink A (1956) Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscopy study. J Gen Microbiol 15:146–150

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Lin J, Gao D, Zhang F, Yi L, Huang Y, Yan X, Duan Y, Zhu X (2019) Discovery of gas vesicles in Streptomyces sp. CB03234-S and potential effects of gas vesicle gene overexpression on morphological and metabolic changes in streptomycetes. Appl Microbiol Biotechnol 103:5751–5761

    Article  CAS  PubMed  Google Scholar 

  • Irgens RL, Suzuki I, Staley J (1989) Gas vacuolate bacteria obtained from marine waters of Antarctica. Curr Microbiol 18:261–265

    Article  Google Scholar 

  • Jäger A, Samorski R, Pfeifer F, Klug G (2002) Individual gvp transcript segments in Haloferax mediterranei exhibit varying half-lives, which are differentially affected by salt concentration and growth phase. Nucleic Acids Res 30:5436–5443

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung D, Achenbach L, Karr E, Takaichi S, Madigan M (2004) A gas vesiculate planktonic strain of the purple non-sulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, dry valleys, Antarctica. Arch Microbiol 182:236–243

    Article  CAS  PubMed  Google Scholar 

  • Karr E, Sattley W, Jung D, Madigan M, Achenbach L (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinsman R, Hayes PK (1997) Genes encoding proteins homologous to halobacterial Gvps N, J, K, F & L are located downstream of gvpC in the cyanobacterium Anabaena flos-aquae. DNA Seq 7:97–106

    Article  CAS  PubMed  Google Scholar 

  • Kinsman R, Walsby AE, Hayes PK (1995) GvpCs with reduced numbers of repeating sequence elements bind to and strengthen cyanobacterial gas vesicles. Mol Microbiol 17:147–154

    Article  CAS  PubMed  Google Scholar 

  • Klebahn H (1895) Gasvakuolen, ein Bestandteil der Zellen der wasserblütenbildenden Phycochromaceen. Flora (Jena) 80:241

    Google Scholar 

  • Knitsch R, Schneefeld M, Weitzel K, Pfeifer F (2017) Mutations in the major gas vesicle protein GvpA and impacts on gas vesicle formation in Haloferax volcanii. Mol Microbiol 106:530–542

    Article  CAS  PubMed  Google Scholar 

  • Konopka A, Lara J, Staley J (1977) Isolation and characterization of gas vesicles from Microcyclus aquaticus. Arch Microbiol 112:133–140

    Article  CAS  PubMed  Google Scholar 

  • Krüger K, Pfeifer F (1996) Transcript analysis of the c-vac region and differential synthesis of the two regulatory gas vesicle proteins GvpD and GvpE in Halobacterium salinarium PHH4. J Bacteriol 178:4012–4009

    Article  PubMed  PubMed Central  Google Scholar 

  • Krüger K, Hermann T, Armbruster V, Pfeifer F (1998) The transcriptional activator GvpE for the halobacterial gas vesicle genes resembles a basic region leucine-zipper regulatory protein. J Mol Biol 279:761–771

    Article  PubMed  Google Scholar 

  • Lakshmanan A, Farhadi A, Nety S, Lee-Gosselin A, Bourdeau R, Maresca D, Shapiro MG (2016) Molecular engineering of acoustic protein nanostructures. ACS Nano 10:7314–7322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakshmanan A, Lu G, Farhadi A, Nety S, Kunth M, Lee-Gosselin A, Maresca D, Bourdeau R, Yin M, Yan J, Witte C, Malounda D, Foster F, Schröder L, Shapiro MG (2017) Preparation and noninvasive imaging of biogenic gas vesicle nanostructures. Nat Protoc 12(10):2050–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen H, Omang S, Steensland H (1967) On the gas vacuoles of the halobacteria. Arch Microbiol 59:197–203

    CAS  Google Scholar 

  • Lee E, Karoonutharisiri N, Kim H, Park J, Cha C, Kao C, Roe J (2005) A master regulator σB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol Microbiol 57:1252–1264

    Article  CAS  PubMed  Google Scholar 

  • Li N, Cannon M (1998) Gas vesicle genes identified in Bacillus megaterium and functional expression in Escherichia coli. J Bacteriol 180:2450–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marschaus L, Pfeifer F (2012) A dual promoter region with overlapping activator sequences drives the expression of gas vesicle protein genes in haloarchaea. Microbiol 158:2815–2825

    Article  Google Scholar 

  • Mayr A, Pfeifer F (1997) The characterization of the nv-gvpACNOFGH gene cluster involved in gas vesicle formation in Natronobacterium vacuolatum. Arch Microbiol 168:24–32

    Article  CAS  PubMed  Google Scholar 

  • McMaster T, Miles M, Walsby AE (1996) Direct observation of protein secondary structure in gas vesicles by atomic force microscopy. Biophys J 70:2432–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mlouka A, Comte K, Castets A, Bouchier C, Tandeau de Marsac N (2004) The gas vesicle gene cluster from Microcystis aeruginosa and DNA rearrangements that lead to loss of cell buoyancy. J Bacteriol 186:2355–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monson RE, Tashiro Y, Salmon G (2016) Overproduction of individual gas vesicle proteins perturbs flotation, antibiotic production and cell division in the enterobacterium Serratia sp. ATCC 39006. Microbiol 162:1595–1607

    Article  CAS  Google Scholar 

  • Montalvo-Rodriguez R, Vreeland R, Oren A, Kessel M, Betancourt C, López-Garriga J (1998) Halogeometricum borinquense gen nov, sp nov, a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 48:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Davis H, Ramesh P, Lu G, Shapiro MG (2017) Biomolecular MRI reporters: evolution of new mechanisms. Prog Nucl Magn Reson Spectrosc 102-103:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mwatha W, Grant W (1993) Natronobacterium vacuolatum sp nov, a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Bacteriol 43:401–404

    Article  Google Scholar 

  • Ng W, Kennedy S, Mahairas G, Berquist B, Pan M, Shukla H, Lasky S, Baliga N, Thorsson V, Sbrogna J et al (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97:12176–12181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oesterhelt D (1998) The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol 8:489–500

    Article  CAS  PubMed  Google Scholar 

  • Offner S, Pfeifer F (1995) Complementation studies with the gas vesicle-encoding p-vac region of Halobacterium salinarium PHH1 reveal a regulatory role for the p-gvpDE genes. Mol Microbiol 16:9–19

    Article  CAS  PubMed  Google Scholar 

  • Offner S, Wanner G, Pfeifer F (1996) Functional studies of the gvpACNO operon of Halobacterium salinarium reveal that the GvpC protein shapes gas vesicles. J Bacteriol 178:2071–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Offner S, Ziese U, Wanner G, Typke D, Pfeifer F (1998) Structural characteristics of halobacterial gas vesicles. Microbiol 144:1331–1342

    Article  CAS  Google Scholar 

  • Offner S, Hofacker A, Wanner G, Pfeifer F (2000) Eight of fourteen gvp genes are sufficient for formation of gas vesicles in halophilic archaea. J Bacteriol 182:4328–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver R, Walsby AE (1984) Direct evidence for the role of light-mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos-aquae (cyanobacteria). Limnol Oceanogr 29:879–886

    Article  Google Scholar 

  • Oren A (2013) The function of gas vesicles in halophilic archaea and bacteria: theories and experimental evidence. Life 3:1–20

    Article  CAS  Google Scholar 

  • Overmann J, Lehmann S, Pfennig N (1991) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (green Sulphur bacteria). Arch Microbiol 157:29–37

    Article  CAS  Google Scholar 

  • Parkes K, Walsby AE (1981) Ultrastructure of a gas-vacuolate square bacterium. J Gen Microbiol 126:503–506

    Google Scholar 

  • Petter H (1931) On bacteria of salted fish. Proc Natl Acad Sci Amsterdam 34:1417–1423

    CAS  Google Scholar 

  • Pfeifer F (2004) Gas vesicle genes in halophilic archaea and bacteria. In: Ventosa A (ed) Halophilic microorganisms. Springer, Berlin, Heidelberg, pp 229–239

    Chapter  Google Scholar 

  • Pfeifer F (2012) Distribution, formation and regulation of gas vesicles. Nature Rev Microbiol 10:705–715

    Article  CAS  Google Scholar 

  • Pfeifer F (2015) Haloarchaea and the formation of gas vesicles. Life 5:385–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer F, Weidinger G, Goebel W (1981) Genetic variability in Halobacterium halobium. J Bacteriol 145:375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer F, Offner S, Krüger K, Ghahraman P, Englert C (1994) Transformation of halophilic archaea and investigation of gas vesicle synthesis. System Appl Microbiol 16:569–577

    Article  CAS  Google Scholar 

  • Pfeifer F, Zotzel J, Kurenbach B, Röder R, Zimmermann P (2001) A p-loop motif and two basic regions in the regulatory protein GvpD are important for the repression of gas vesicle formation in the archaeon Haloferax mediterranei. Microbiol 147:63–73

    Article  CAS  Google Scholar 

  • Plösser P, Pfeifer F (2002) A bZIP protein from halophilic archaea: structural features and dimer formation of cGvpE from Halobacterium salinarum. Mol Microbiol 45:511–520

    Article  PubMed  Google Scholar 

  • Ramsay JP, Salmond G (2012) Quorum sensing-controlled buoyancy through gas vesicles. Comm & Intregrat Biology 5:96–98

    Article  CAS  Google Scholar 

  • Ramsay JP, Williamson NR, Spring DR, Salmond G (2011) A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium. Proc Natl Acad Sci USA 6:14932–14937

    Article  Google Scholar 

  • Röder R, Pfeifer F (1996) Influence of salt on the transcription of the gas-vesicle genes of Haloferax mediterranei and identification of the endogenous transcriptional activator gene. Microbiol 142:1715–1723

    Article  Google Scholar 

  • Sartorius-Neef S, Pfeifer F (2004) In vivo studies on putative Shine-Dalgarno sequences of the halophilic archaeon Halobacterium salinarum. Mol Microbiol 51:579–588

    Article  CAS  PubMed  Google Scholar 

  • Scheuch S, Pfeifer F (2007) GvpD-induced breakdown of the transcriptional activator GvpE of halophilic archaea required a functional p-loop and an arginine-rich region in GvpD. Microbiol 153:947–958

    Article  CAS  Google Scholar 

  • Scheuch S, Marschaus L, Sartorius-Neef S, Pfeifer F (2008) Regulation of gvp genes encoding gas vesicle proteins in halophilic archaea. Arch Microbiol 190:333–340

    Article  CAS  PubMed  Google Scholar 

  • Schmidt I, Pfeifer F (2013) Use of GFP-GvpE fusions to quantify the GvpD-mediated reduction of the transcriptional activator GvpE in haloarchaea. Arch Microbiol 195:403–412

    Article  CAS  PubMed  Google Scholar 

  • Shapiro MG, Goodwill P, Neogy A, Yin M, Foster F, Schaffer D, Conolly S (2014a) Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol 9:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro MG, Ramirez R, Sperling L, Sun G, Sun J, Pines A, Schaffer D, Bajaj V (2014b) Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nature Chem 6:629–634

    Article  CAS  Google Scholar 

  • Sivertsen A, Bayro M, Belenky M, Griffin R, Herzfeld J (2010) Solid-state NMR characterization of gas vesicle structure. Biophys J 99:1932–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sremac M, Stuart E (2008) Recombinant gas vesicles from Halobacterium sp displaying SIV peptides demonstrate biotechnology potential as a pathogen delivery vehicle. BMC Biotechnol 8:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sremac M, Stuart E (2010) SIVsm tat, rev, and Nef1: functional characteristics of r-GV internalization on isotypes, cytokines, and intracellular degradation. BMC Biotechnol 10:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staley J (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 95:1921–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staley J, Irgens R, Brenner D (1987) Enhydrobacter aerosarcus gen nov, sp nov, a gas-vacuolated, facultatively anaerobic, heterotrophic rod. Int J Syst Bacteriol 37:289–291

    Article  Google Scholar 

  • Staley J, Irgens R, Herwig R (1989) Gas vacuolate bacteria from the sea ice of Antarctica. Appl Environ Microbiol 55:1033–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeckenius W, Kunau W (1968) Further characterization of particulate fractions from lysed cell envelopes of Halobacterium halobium and isolation of gas vacuole membranes. J Cell Biol 38:337–357

    Article  PubMed Central  Google Scholar 

  • Strunk T, Hamacher K, Hoffgaard F, Engelhardt H, Zillig M, Faist K, Pfeifer F (2011) Structural model of the gas vesicle protein GvpA and analysis of GvpA mutants in vivo. Mol Microbiol 81:56–68

    Article  CAS  PubMed  Google Scholar 

  • Stuart E, Morshed F, Sremac M, DasSarma S (2001) Antigen presentation using novel particulate organelles from halophilic archaea. J Biotechnol 88:119–128

    Article  CAS  PubMed  Google Scholar 

  • Stuart E, Morshed F, Sremac M, DasSarma S (2004) Cassette-based presentation of SIV epitopes with recombinant gas vesicles from halophilic archaea. J Biotechnol 114:225–237

    Article  CAS  PubMed  Google Scholar 

  • Tashiro Y, Monson R, Ramsay J, Salmond G (2016) Molecular genetic and physical analysis of gas vesicles in buoyant enterobacteria. Environ Microbiol 18:1264–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavlaridou S, Faist K, Weitzel K, Pfeifer F (2013) Effect of an overproduction of accessory Gvp proteins on gas vesicle formation in Haloferax volcanii. Extremophiles 17:277–287

    Article  CAS  PubMed  Google Scholar 

  • Tavlaridou S, Winter K, Pfeifer F (2014) The accessory gas vesicle protein GvpM of haloarchaea and its interaction partners during gas vesicle formation. Extremophiles 18:693–706

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Walsby AE (1985) Buoyancy regulation on a strain of Microcystis. J Gen Microbiol 131:799–809

    Google Scholar 

  • Van Ert M, Staley J (1971) A new gas vacuolated heterotrophic rod from freshwaters. Arch Microbiol 80:70–77

    Google Scholar 

  • Van Keulen G, Hopwood D, Dijkhuizen L, Sawers G (2005) Gas vesicles in actinomycetes: old buoys in novel habitats? Trends Microbiol 13:350–354

    Article  PubMed  CAS  Google Scholar 

  • Völkner K, Jost A, Pfeifer F (2020) Accessory Gvp proteins form a complex during gas vesicle formation of haloarchaea. Front Microbiol. https://doi.org/10.3389/fmicb.2020.610179

  • Walsby AE (1972) Structure and function of gas vacuoles. Bacteriol Rev 36:1–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsby AE (1982) Permeability of gas vesicles to perfluorocyclobutane. J Gen Microbiol 128:1679–1684

    CAS  Google Scholar 

  • Walsby AE (1994) Gas vesicles. Microbiol Rev 58:94–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsby AE (2005) Archaea with square cells. Trends Microbiol 13:193–195

    Article  CAS  PubMed  Google Scholar 

  • Walsby AE, Bleything A (1988) The dimensions of cyanobacterial gas vesicles in relation to their efficiency in providing buoyancy and withstanding pressure. J Gen Microbiol 134:2635–2645

    Google Scholar 

  • Walsby AE, Hayes PK (1988) The minor cyanobacterial gas vesicle protein, GvpC, is attached to the outer surface of the gas vesicle. J Gen Microbiol 134:2647–2657

    CAS  Google Scholar 

  • Walsby AE, McAllister G (1987) Buoyancy regulation of Microcystis in Lake Okaro. New Zeal J Mar Fresh Res 21:521–524

    Article  Google Scholar 

  • Walsby AE, Revsbech NP, Griffel DH (1992) The gas-permeability coefficient of the cyanobacterial gas vesicle wall. J Gen Microbiol 138:837–845

    Article  CAS  Google Scholar 

  • Williamson N, Fineran P, Ogawa W, Woodley L, Salmond G (2008) Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia. Environ Microbiol 10:1202–1217

    Article  CAS  PubMed  Google Scholar 

  • Winter K, Born J, Pfeifer F (2018) Interaction of haloarchaeal gas vesicle proteins determined by split-GFP. Front Microbiol 9:1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu B, Dai Y, Zhou K, Liu Y, Sun Q, Ren Y, Chen Y, Zhou C (2014) Structure of the gas vesicle protein GvpF from the cyanobacterium Microcystis aeruginosa. Acta Crystallogr D Biol Crystallogr 70:3013–3022

    Article  CAS  PubMed  Google Scholar 

  • Yao V, Spudich J (1992) Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I. Proc Natl Acad Sci U S A 89:11915–11919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Broun A, Mueller M, Alam M (1996) The primary structure of the archaeon Halobacterium salinarum blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Proc Natl Acad Sci U S A 93:8230–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann P, Pfeifer F (2003) Regulation of the expression of gas vesicle genes in Haloferax mediterranei: interaction of the two regulatory proteins GvpD and GvpE. Mol Microbiol 49:783–794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG; Pf 165). Arnulf Kletzin is thanked for bioinformatic analyses, and Daniel Bollschweiler and Harald Engelhardt (Max-Planck-Institute for Biochemistry in Martinsried, Germany) for the cryo-electron micrograph of gas vesicles in Fig. 3. Kerstin Völkner (Winter), and Alisa Jost are thanked for their contributions to the studies on GvpA and the interaction of accessory Gvp proteins. Gerald Losensky is thanked for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicitas Pfeifer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfeifer, F. (2020). Gas Vesicles of Archaea and Bacteria. In: Jendrossek, D. (eds) Bacterial Organelles and Organelle-like Inclusions. Microbiology Monographs, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-60173-7_4

Download citation

Publish with us

Policies and ethics