Skip to main content

Wearable Devices and COVID-19: State of the Art, Framework, and Challenges

  • Chapter
  • First Online:
Emerging Technologies for Battling Covid-19

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 324))

Abstract

In the current century, the novel coronavirus has presented itself as a serious threat to the global human population. However, constructively, with the intervention of the latest computing technology such as the Internet of Things, distributed cloud computing, and artificial intelligence, the COVID-19 pandemic can be effectively handled. From this aspect, the main objectives of this chapter are to study and present various wearable devices as part of the healthcare system toward combating the COIVD-19 pandemic. First, this work aims to review the different wearable devices and their usage to combat COVID-19 by patients, healthcare professional, frontliners, and global citizens. Hence, the major objectives of these wearable devices include device tracking, information sharing, and awareness creation to minimize the risk of coronavirus infection. Second, the chapter addresses a generalized framework toward the implementation of wearable devices to handle the COVID-19 pandemic. Next, this chapter aims to review monitoring techniques and various mechanisms used to analyze the data gathered from wearable devices in order to extract useful and critical information pertaining to users in the COVID-19 scenario. This chapter involves reviewing efficient techniques and algorithms that exist in literature for data analysis based on vital body signals from the wearable sensor devices. This effort enhances the patient/healthcare staff monitoring mechanism and helps to uncover preventive solutions in the COVID-19 scenario. Particularly, the data processing and analysis mechanisms such as data denoising, data aggregation, data outlier detection, and missing data imputation are emphasized. Finally, the chapter addresses various challenges associated with wearable devices in the COVID-19 scenario such as real-time processing, heterogeneity, interoperability, security, and privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayatollahitafti, V., et al.: Requirements and challenges in body sensor networks: a survey. J. Theor. Appl. Info. Tech. 72(2) (2015)

    Google Scholar 

  2. Johnson, M., et al.: A comparative review of wireless sensor network mote technologies. In: 8th IEEE Conference on Sensors (IEEE SENSORS 2009), Christchurch, New Zealand (2009)

    Google Scholar 

  3. Flammini, A., Sisinni, E.: Wireless sensor networking in the internet of things and cloud computing era. Procedia Eng. 87, 672–679 (2014)

    Article  Google Scholar 

  4. Kern, N., Schiele, B., Junker, H., Lukowicz, P., Troster, G.: Wearable sensing to annotate meeting recordings. Pers. Ubiquit. Comput. 7, 263–274 (2003)

    Google Scholar 

  5. Lukowicz, P., Ward, J., Junker, H., Starner, T.: Recognizing workshop activity using body worn microphones and accelerometers. In: Proceedings of Pervasive Computing, pp. 18–23 (2004)

    Google Scholar 

  6. Lee, S., Mase, K.: Activity and location recognition using wearable sensors. IEEE Pervasive Comput. 1, 24–32 (2002)

    Google Scholar 

  7. Rodgers, M.M., Pai, V.M., Conroy, R.S.: Recent advances in wearable sensors for health monitoring. IEEE Sensors J. 15(6), 3119–3126 (2015). https://doi.org/10.1109/JSEN.2014.2357257

    Article  Google Scholar 

  8. Uddin, M., Salem, A., Nam, I., Nadeem, T.: Wearable sensing framework for human activity monitoring. In: Proceedings of the 2015 Workshop on Wearable Systems and Applications, pp. 21–26 (2015)

    Google Scholar 

  9. Yang, C.-C., Hsu, Y.-L.: A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 10(8), 7772–7788 (2010)

    Article  Google Scholar 

  10. Mathie, M.J., Coster, A.C.F., Lovell, N.H., Celler, B.G.: Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol. Meas. 25, R1–R20 (2004)

    Article  Google Scholar 

  11. Zhu, X., Liu, W., Shuang, S., Nair, M., Li, C.-Z.: Intelligent tattoos, patches, and other wearable biosensors. In: Narayan, R.J. (ed.) Medical Biosensors for Point of Care (poc) Applications, pp. 133–150. Woodhead Publishing, Duxford (2017)

    Chapter  Google Scholar 

  12. Khan, Y., Ostfeld, A.E., Lochner, C.M., Pierre, A., Arias, A.C.: Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373–4395 (2016)

    Article  Google Scholar 

  13. Bandodkar, A.J., Wang, J.: Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014)

    Article  Google Scholar 

  14. Dubey, H., et al.: Fog computing in medical Internet-of-Things: architecture, implementation, and applications. In: Khan, S.U., Zomaya, A.Y., Abbas, A. (eds.) Handbook of Large-Scale Distributed Computing in Smart Healthcare. SCC, pp. 281–321. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58280-1_11

    Chapter  Google Scholar 

  15. Mukhopadhyay, S.C.: Wearable sensors for human activity monitoring: a review. IEEE Sensors. 15, 1321–1330 (2015)

    Article  Google Scholar 

  16. Rodgers Mary, M., Vinay, P., Conroy Richard, S.: Recent advances in wearable sensors for health monitoring. IEEE Sensors. 15, 3119–3126 (2015)

    Article  Google Scholar 

  17. Fang, Y., Jiang, Z., Wang, H.: A novel sleep respiratory rate detection method for obstructive sleep apnea based on characteristic moment waveform. J. Healthc. Eng. 2018, 1–10 (2018) https://www.hindawi.com/journals/jhe/2018/1902176/

    Article  Google Scholar 

  18. Pang, Y., Jian, J., Tu, T., Yang, Z., Ling, J., Li, Y., et al.: Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens. Bioelectron. 116, 123–129 (2018). https://doi.org/10.1016/j.bios.2018.05.038

    Article  Google Scholar 

  19. Molinaro, N., Massaroni, C., Lo Presti, D., Saccomandi, P., Di Tomaso, G., Zollo, L., et al.: Wearable textile based on silver plated knitted sensor for respiratory rate monitoring. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2865–2868. IEEE (2018). http://ieeexplore.ieee.org/document/8512958/

  20. Dieffenderfer, J., Goodell, H., Mills, S., McKnight, M., Yao, S., Lin, F., et al.: Low-power wearable systems for continuous monitoring of environment and health for chronic respiratory disease. IEEE J. Biomed. Health Inform. 20(5), 1251–1264 (2016) http://ieeexplore.ieee.org/document/7479442/

    Article  Google Scholar 

  21. Benreguia, B., Moumen, H., Merzoug, M.A.: Tracking COVID-19 by tracking infectious trajectories. arXiv preprint arXiv:2005.05523 (2020)

    Google Scholar 

  22. Ionescu, C.M., Copot, D.: Monitoring respiratory impedance by wearable sensor device: protocol and methodology. Biomed. Signal Process. Control. 36, 57–62 (2017). https://doi.org/10.1016/j.bspc.2017.03.018

    Article  Google Scholar 

  23. Reinvuo, T., Hannula, M., Sorvoja, H., Alasaarela, E., Myllyla, R.: Measurement of respiratory rate with hig hresolution accelerometer and EMFit pressure sensor. In: Proceedings 2006 IEEE Sensors Applications Symposium, 2006, pp. 192–195. IEEE (2006) [cited 6 Jan 2015]. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1634270

  24. Yuasa, Y., Takahashi, K., Suzuki, K.: Wearable flexible device for respiratory phase measurement based on sound and chest movement. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2378–2383 (2017)

    Google Scholar 

  25. Ejupi, A., Menon, C.: Detection of talking in respiratory signals: a feasibility study using machine learning and wearable textile-based sensors. Sensors. 18(8), 2474 (2018) www.mdpi.com/1424-8220/18/8/2474

    Article  Google Scholar 

  26. Shkel, A.A., Kim, E.S.: Wearable low-power wireless lung sound detection enhanced by resonant transducer array for pre-filtered signal acquisition. In: 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), pp. 842–845. IEEE (2017). http://ieeexplore.ieee.org/document/7994180/

  27. McCaughey, E.J., McLachlan, A.J., Gollee, H.: Non-intrusive realtime breathing pattern detection and classification for automatic abdominal functional electrical stimulation. Med. Eng. Phys. 36(8), 1057–1061 (2014). https://doi.org/10.1016/j.medengphy.2014.04.005

    Article  Google Scholar 

  28. Jubran, A.: Pulse oximetry. Crit. Care. 19(1), 272 (2015) [cited 2 Feb 2019]. http://ccforum.com/content/3/2/R11

    Article  Google Scholar 

  29. Nilashi, M., Asadi, S., Abumalloh, R.A., Samad, S., Ibrahim, O.: Intelligent recommender systems in the COVID-19 outbreak: the case of wearable healthcare devices. J. Soft Comput. Decis. Support. Syst. 7(4), 8–12 (2020)

    Google Scholar 

  30. Tripathy, A.K., Mohapatra, A.G., Mohanty, S.P., Kougianos, E., Joshi, A.M., Das, G.: EasyBand: a wearable for safety-aware mobility during pandemic outbreak. IEEE Consum. Electron. Mag. 47, 777–780 (2020)

    Google Scholar 

  31. Mohammed, M.N., Syamsudin, H., Al-Zubaidi, S., Sairah, A.K., Ramli, R., Yusuf, E.: Novel COVID-19 detection and diagnosis system using IOT based smart helmet. Int. J. Psychosoc. Rehabil. 24(7) (2020)

    Google Scholar 

  32. Mujawar, M.A., Gohel, H., Bhardwaj, S.K., Srinivasan, S., Hickman, N., Kaushik, A.: Aspects of nano-enabling biosensing systems for intelligent healthcare; towards COVID-19 management. Mater. Today Chem. 17, 100306 (2020)

    Article  Google Scholar 

  33. Kanis, M., Winters, N., Agamanolis, S., Cullinan, C., Gavin, A.: iBand: a wearable device for handshake augmented interpersonal information exchange. Extended Abstracts Ubicomp 2004 (2004)

    Google Scholar 

  34. Chamberlain, S.D., Singh, I., Ariza, C.A., Daitch, A.L., Philips, P.B., Dalziel, B.D.: Real-time detection of COVID-19 epicenters within the United States using a network of smart thermometers. medRxiv (2020)

    Google Scholar 

  35. Nittas, V., von Wyl, V.: COVID-19 and telehealth: a window of opportunity and its challenges. Swiss Med. Wkly. 150(1920), w20284 (2020)

    Article  Google Scholar 

  36. Tayal, M., Mukherjee, A., Chauhan, U., Uniyal, M., Garg, S., Singh, A., Bhadoria, A.S., Kant, R.: Evaluation of remote monitoring device for monitoring vital parameters against reference standard: a diagnostic validation study for COVID-19 preparedness. Indian J. Community Med. 45(2), 235 (2020)

    Article  Google Scholar 

  37. Swatch, Synchrobeat. http://www.swatch.com/synchro/index2.html

  38. SpotMe. http://www.spotme.ch

  39. nTag. http://www.ntag.com

  40. Charm Tech Badge. http://www.charmed.com

  41. Khan, S., Shakil, K.A., Alam, M.: Cloud-Based Big Data Analytics—A Survey of Current Research and Future Directions. In: Big Data Analytics, pp. 595–604. Springer, Singapore (2018)

    Chapter  Google Scholar 

  42. Qi, J., Yang, P., Min, G., Amft, O., Dong, F., Xu, L.: Advanced internet of things for personalised healthcare systems: a survey. Pervasive Mobile Comput. 41, 132–149 (2017)

    Article  Google Scholar 

  43. Huang, Y., Zheng, H., Nugent, C., McCullagh, P., Black, N., Hawley, M., Mountain, G.: Knowledge discovery from lifestyle profiles to support self-management of chronic heart failure. In: 2011 Computing in Cardiology, pp. 397–400. IEEE (2011)

    Google Scholar 

  44. Rafferty, J., Nugent, C., Chen, L., Qi, J., Dutton, R., Zirk, A., et al.: NFC based provisioning of instructional videos to assist with instrumental activities of daily living. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4131–4134. IEEE (2014)

    Google Scholar 

  45. Alwashmi, M.F.: The use of digital health in the detection and management of COVID-19. Int. J. Environ. Res. Public Health. 17(8), 2906 (2020)

    Article  Google Scholar 

  46. Marinsek, N., Shapiro, A., Clay, I., Bradshaw, B., Ramirez, E., Min, J., Trister, A., Wang, Y., Althoff, T., Foschini, L.: Measuring COVID-19 and influenza in the real world via person-generated health data. medRxiv (2020)

    Google Scholar 

  47. Behar, J.A., Liu, C., Tsutsui, K., Corino, V.D.A, Singh, J., Pimentel, M.A.F., Karlen, W., et al.: Remote health monitoring in the time of COVID-19. arXiv preprint arXiv:2005.08537 (2020)

    Google Scholar 

  48. Capodilupo, E.R., Miller, D.J.: Changes in health promoting behavior during COVID-19 physical distancing: utilizing WHOOP data to examine trends in sleep, activity, and cardiovascular health. medRxiv (2020)

    Google Scholar 

  49. Zhu, G., Li, J., Meng, Z., Yu, Y., Li, Y., Tang, X., Dong, Y., et al.: Learning from large-scale wearable device data for predicting epidemics trend of COVID-19. Discret. Dyn. Nat. Soc. Article ID 6152041, 8 pp (2020)

    Google Scholar 

  50. Zhang, F., Wang, H., Chen, R., Hu, W., Zhong, Y., Wang, X.: Remote monitoring contributes to preventing overwork-related events in health workers on the COVID-19 frontlines. Precis. Clin. Med. 3(2), 97–99 (2020)

    Article  Google Scholar 

  51. Chung, Y.-T., Yeh, C.-Y., Shu, Y.-C., Chuang, K.-T., Chen, C.-C., Kao, H.-Y., Ko, W.-C., Chen, P.-L., Ko, N.-Y.: Continuous temperature monitoring by a wearable device for early detection of febrile events in the SARS-CoV-2 outbreak in Taiwan, 2020. J. Microbiol. Immunol. Infect. 53(3), 503 (2020)

    Article  Google Scholar 

  52. Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial intelligence (AI) Applications for COVID-19 Pandemic. Diabetes Metab Syndr Clin Res Rev. 14(4), 337–339 (2020). https://doi.org/10.1016/j.dsx.2020.04.012

    Article  Google Scholar 

  53. Hussain, S., Kang, B.H., Lee, S.: A wearable device-based personalized big data analysis model. In: International Conference on Ubiquitous Computing and Ambient Intelligence, pp. 236–242. Springer, Cham (2014)

    Google Scholar 

  54. Smieszek, T., Salathe, M.: A low-cost method to assess the epidemiological importance of individuals in controlling infectious disease outbreaks. BMC Med. 11, 35 (2013)

    Article  Google Scholar 

  55. Salathe, M., Kazandjieva, M., Lee, J.W., Levis, P., Feldman, M.W., Jones, J.H.: A high-resolution human contact network for infectious disease transmission. Proc. Natl. Acad. Sci. U. S. A. 107, 22020–22025 (2010)

    Article  Google Scholar 

  56. Cauchemez, S., Bhattarai, A., Marchbanks, T.L., et al.: Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proc. Natl. Acad. Sci. U. S. A. 108, 2825–2830 (2011)

    Article  Google Scholar 

  57. Temime, L., Opatowski, L., Pannet, Y., Brun-Buisson, C., Boelle, P.Y., Guillemot, D.: Peripatetic health-care workers as potential superspreaders. Proc. Natl. Acad. Sci. U. S. A. 106, 18420–18425 (2009)

    Article  Google Scholar 

  58. Barrat, A., Cattuto, C., Tozzi, A.E., Vanhems, P., Voirin, N.: Measuring contact patterns with wearable sensors: methods, data characteristics and applications to data-driven simulations of infectious diseases. Clin. Microbiol. Infect. 20(1), 10–16 (2014)

    Article  Google Scholar 

  59. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS One. 5, e11596 (2010)

    Article  Google Scholar 

  60. Yan, L., Zhang, H.T., Goncalves, J., Xiao, Y., Wang, M., Guo, Y., et al.: A machine learning-based model for survival prediction in patients with severe COVID-19 infection. MedRxiv (2020)

    Google Scholar 

  61. Haleem, A., Javaid, M., Vaishya, R.: Effects of COVID 19 pandemic in daily life. Curr. Med. Res. Pract. 10(2), 78–79 (2020). https://doi.org/10.1016/j.cmrp.2020.03.011

    Article  Google Scholar 

  62. Bai, H.X., Hsieh, B., Xiong, Z., Halsey, K., Choi, J.W., Tran, T.M., Pan, I., Shi, L.B., Wang, D.C., Mei, J., Jiang, X.L.: Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology. 296(2), E46–E54 (2020). https://doi.org/10.1148/radiol.2020200823

    Article  Google Scholar 

  63. Hu, Z., Ge, Q., Jin, L., Xiong, M.: Artificial intelligence forecasting of COVID-19 in China. arXiv preprint arXiv:2002.07112 (2020)

    Google Scholar 

  64. Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P.D., Zhang, H., Ji, W., Bernheim, A., Siegel, E.: Rapid AI development cycle for the coronavirus (COVID-19) pandemic: initial results for automated detection & patient monitoring using deep learning CT image analysis. arXiv preprint arXiv:2003.05037 (2020)

    Google Scholar 

  65. Pirouz, B., ShaffieeHaghshenas, S., ShaffieeHaghshenas, S., Piro, P.: Investigating a serious challenge in the sustainable development process: analysis of confirmed cases of COVID-19 (new type of coronavirus) through a binary classification using artificial intelligence and regression analysis. Sustainability. 12(6), 2427 (2020)

    Article  Google Scholar 

  66. Ting, D.S., Carin, L., Dzau, V., Wong, T.Y.: Digital technology and COVID-19. Nat. Med. 26(4), 459–461 (2020)

    Article  Google Scholar 

  67. Wan, K.H., Huang, S.S., Young, A., Lam, D.S.: Precautionary measures needed for ophthalmologists during pandemic of the coronavirus disease 2019 (COVID-19). Acta Ophthalmol. 98(3), 221–222 (2020)

    Article  Google Scholar 

  68. Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K.: Artificial intelligence distinguishes COVID-19 from community-acquired pneumonia on chest CT. Radiology. 19, 200905 (2020)

    Google Scholar 

  69. Smeulders, A.W., Van Ginneken, A.M.: An analysis of pathology knowledge and decision making for the development of artificial intelligence-based consulting systems. Anal. Quant. Cytol. Histol. 11(3), 154–165 (1989)

    Google Scholar 

  70. Chowel, G., Viboud, C.: A practical method to target individuals for outbreak detection and control. BMC Med. 11, 36 (2013)

    Article  Google Scholar 

  71. Pandey, G., Chaudhary, P., Gupta, R., Pal, S.: SEIR and regression model based COVID-19 outbreak predictions in India. arXiv preprint arXiv:2004.00958 (2020)

    Google Scholar 

  72. Dong, E., Du, H., Gardner, L.: An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20(5), 533–534 (2020). https://doi.org/10.1016/S1473-3099(20)30120-1. Published online Feb 19

    Article  Google Scholar 

  73. Ardabili, S.F., Mosavi, A., Ghamisi, P., Ferdinand, F., Varkonyi-Koczy, A.R., Reuter, U., et al.: Covid-19 outbreak prediction with machine learning. Available at SSRN 3580188 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajalakshmi Krishnamurthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnamurthi, R., Gopinathan, D., Kumar, A. (2021). Wearable Devices and COVID-19: State of the Art, Framework, and Challenges. In: Al-Turjman, F., Devi, A., Nayyar, A. (eds) Emerging Technologies for Battling Covid-19. Studies in Systems, Decision and Control, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-60039-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60039-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60038-9

  • Online ISBN: 978-3-030-60039-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics