Skip to main content

New Photogrammetric Systems for Easy low-Cost 3D Digitization of Cultural Heritage

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis

Abstract

With the contribution of new technologies, the 3D digitization of museum collections opens great possibilities to perform conservation, research, education, and dissemination tasks in a more versatile, accessible, and attractive way. Although these applications have been carried out throughout the last decade in some institutions, the use of these technologies in public museums is still very limited. In this context, there is a demand for new photogrammetric systems for 3D digitization of cultural heritage. In this chapter, the state of the art of photogrammetry with Structure from Motion as well as methods, instrumental setup, and software systems are reviewed. Based on this technique, an example of an easy low-cost 3D digitization system for low-budget public museums is presented. Their applications in the local public sphere are described, and a work plan for 3D digitization projects is proposed to be implemented in public museums that do not have easy access to this type of technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Remondino F, Rizzi A (2010) Reality-based 3D documentation of natural and cultural heritage sites – techniques, problems, and examples. Appl Geomat 2(3):85–100. https://doi.org/10.1007/s12518-010-0025-x

    Article  Google Scholar 

  2. Remondino F (2011) Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens 3(6):1104–1138. https://doi.org/10.3390/rs3061104

    Article  Google Scholar 

  3. Sansoni G, Trebeschi M, Docchio F (2009) State-of-the-art and applications of 3D imaging sensors in industry, cultural heritage, medicine, and criminal investigation. Sensors 9:568–601. https://doi.org/10.3390/s90100568

    Article  Google Scholar 

  4. Schaich M (2009) 3D-Scanning-Technologien in der Bau- und Kunstdenkmalpflege und der archäologischen Feld- und Objektdokumentation. In: Faulstich E, Hahn-Weishaupt A (eds) Dokumentation und Innovation bei der Erfassung von Kulturgütern. Schriften des Bundesverbands freiberuflicher Kulturwissenschaftler 2. Online-publication: http://www.b-f-k.de/webpub01/cnt/schaich.htm

  5. Ioannides M, Fritsch D, Leissner J, Davies R, Remondino F, Caffo R (eds) (2012) Progress in cultural heritage preservation, 4th international conference, EuroMed 2012, Limassol, Cyprus, proceedings series: Lecture notes in computer science, vol 7616. Subseries: Information systems and applications, incl. Internet/Web, and HCI. 2012, XXV. Irschara

    Google Scholar 

  6. Morita M, Bilmes GM (2018) Applications of low-cost 3D imaging techniques for the documentation of heritage objects. Óptica Pura y Aplicada 51(2):50026:1–50026:11. https://doi.org/10.7149/OPA.51.2.50026

    Article  Google Scholar 

  7. Yanagi H, Chikatsu H (2010) 3D modelling of small objects using macro lens in digital very close-range photogrammetry. ISPRS Arch 38:617–622

    Google Scholar 

  8. Remondino F, Spera MG, Nocerino E, Menna F, Nex F (2014) State of the art in high density image matching. Photogramm Rec 29(146):144–166

    Article  Google Scholar 

  9. Stylianidis E, Remondino F (2016) 3D recording, documentation and management of cultural heritage. Whittles Publishing

    Google Scholar 

  10. Micheletti N, Chandler JH, Lane SN (2015) Structure from motion (SfM) photogrammetry. Photogramm Herit 2:1–12

    Google Scholar 

  11. Roncella R, Re C, Forlani G (2011) Performance evaluation of a structure and motion strategy in architecture and cultural heritage. Int Arch Photogramm Remote Sensing Spat Inf Sci 38:285–292

    Google Scholar 

  12. Chiabrando F, Donadio E, Rinaudo F (2015) SfM for orthophoto to generation: a winning approach for cultural heritage knowledge. Proc Int Arch Photogramm Remote Sensing Spat Inf Sci 40(5):91–98

    Article  Google Scholar 

  13. Chiabrando F, Lingua A, Noardo F, Spanò A (2014) 3D modelling of trompe l’oeil decorated vaults using dense matching techniques. Ann Photogramm Remote Sensing Spat Inf Sci 2(5):97–104

    Google Scholar 

  14. Fernández-Lozano J, Gutiérrez-Alonso G, Ruiz-Tejada MA, Criado-Valdés M (2017) 3D digital documentation and image enhancement integration into schematic rock art analysis and preservation: the Castrocontrigo Neolithic rock art (NW Spain). J Cult Herit 26:160–166. https://doi.org/10.1016/j.culher.2017.01.008

    Article  Google Scholar 

  15. Monna F, Esin Y, Magail J, Granjon L, Navarro N, Wilczek J, Saligny L, Couette S, Dumontet A, Chateau C (2018) Documenting carved stones by 3D modelling – example of Mongolian deer stones. J Cult Herit 34:116–128. https://doi.org/10.1016/j.culher.2018.04.021

    Article  Google Scholar 

  16. Deger F, Mansouri A, Curdy P, Pedersen M, Hardeberg JY, Voisin Y (2016) Statistical analysis of engraving traces on a 3D digital model of prehistoric stone stelae. J Cult Herit 17:151–158. https://doi.org/10.1016/j.culher.2015.07.007

    Article  Google Scholar 

  17. Lercari N (2019) Monitoring earthen archaeological heritage using multi-temporal terrestrial laser scanning and surface change detection. J Cult Herit 39:152–165. https://doi.org/10.1016/j.culher.2019.04.005

    Article  Google Scholar 

  18. Palma G, Pingi P, Siotto E, Bellucci R, Guidi G, Scopigno R (2019) Deformation analysis of Leonardo da Vinci’s “Adorazione dei Magi” through temporal unrelated 3D digitization. J Cult Herit 38:174–185. https://doi.org/10.1016/j.culher.2018.11.001

    Article  Google Scholar 

  19. Lanitis A, Stylianou G, Voutounos C (2012) Virtual restoration of faces appearing in byzantine icons. J Cult Herit 13(4):404–412. https://doi.org/10.1016/j.culher.2012.01.001

    Article  Google Scholar 

  20. Fowles PS, Larson JH, Dean C, Solajic M (2003) The laser recording and virtual restoration of a wooden sculpture of Buddha. J Cult Herit 4(1):367–371. https://doi.org/10.1016/S1296-2074(02)01141-X

    Article  Google Scholar 

  21. Arbace L, Sonnino E, Callieri M, Dellepiane M, Fabbri M, Iaccarino Idelson A, Scopigno R (2013) Innovative uses of 3D digital technologies to assist the restoration of a fragmented terracotta statue. J Cult Herit 14(4):332–345. https://doi.org/10.1016/j.culher.2012.06.008

    Article  Google Scholar 

  22. Jiménez Fernández-Palacios B, Morabito D, Remondino F (2017) Access to complex reality-based 3D models using virtual reality solutions. J Cult Herit 23:40–48. https://doi.org/10.1016/j.culher.2016.09.003

    Article  Google Scholar 

  23. Magnani M, Guttorm A, Magnani N (2018) Three-dimensional, community-based heritage management of indigenous museum collections: archaeological ethnography, revitalization and repatriation at the Sámi Museum Siida. J Cult Herit 31:162–169. https://doi.org/10.1016/j.culher.2017.12.001

    Article  Google Scholar 

  24. Balletti C, Ballarin M, Guerra F (2017) 3D printing: state of the art and future perspectives. J Cult Herit 26:172–182. https://doi.org/10.1016/j.culher.2017.02.010

    Article  Google Scholar 

  25. Gómez Lahoz J (2010) Introducción a la fotogrametría digital: el método general de la fotogrametría digital. Departamento de Ingeniería Cartográfica y del Terreno, Escuela Politécnica Superior de Ávila

    Google Scholar 

  26. Moffitt FH, Mikhail EM (1980) Photogrammetry, 3rd edn. Harper & Row, New York

    Google Scholar 

  27. Van Damme T (2015) Computer vision photogrammetry for underwater archaeological site recording. PhD thesis, University of Southern Denmark

    Google Scholar 

  28. Snavely N, Seitz SN, Szeliski R (2008) Modeling the world from internet photo col- lections. Int J Comput Vis 80:189–210

    Article  Google Scholar 

  29. Schönberger JL, Frahm J (2016) Structure-from-motion revisited. In: IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, IEEE, pp 4104–4113. https://doi.org/10.1109/CVPR.2016.445

  30. Triggs B, Mclauchlan PF, Hartley RI, Fitzgibbon AW (2000) Bundle adjustment – a modern synthesis. Vis Algorithms Theory Pract 34099:298–372. https://doi.org/10.1007/3-540-44480-7

    Article  Google Scholar 

  31. Sapirstein P (2018) A high-precision photogrammetric recording system for small artifacts. J Cult Herit 31:33–45. https://doi.org/10.1016/j.culher.2017.10.011

    Article  Google Scholar 

  32. Skarlatos D, Kiparissi S (2012) Comparison of laser scanning, photogrammetry and SFM-MVS pipeline applied in structures and artificial surfaces. SPRS Ann Photogramm Remote Sens Spatial Inf Sci I-3:299–304

    Google Scholar 

  33. Torres JC, de Haro J, Arroyo G, Romo C (2012) 3D digitization using structure from motion. CEIG – Spanish Comput Graph Conf 1–10

    Google Scholar 

  34. Corsini M, Dellepiane M, Ganovelli F, Gherardi R, Fusiello A, Scopigno R (2013) Fully automatic registration of image sets on approximate geometry. Int J Comput Vision 102(1–3):91–111. https://doi.org/10.1007/s11263-012-0552-5

    Article  Google Scholar 

  35. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of international conference on computer vision, pp 1150–1157

    Google Scholar 

  36. Rey-Otero I, Delbracio M (2014) Anatomy of the SIFT method. Image Process On Line 4:370–396. https://doi.org/10.5201/ipol.2014.82

    Article  Google Scholar 

  37. Szeliski R (2010) Computer vision: algorithms and applications. Springer Science & Business Media

    Google Scholar 

  38. Furukawa Y, Hernandez C (2015) Multi-view stereo: a tutorial. Found Trends Comput Graph Vis 9(1–2):1–148. https://doi.org/10.1561/0600000052

    Article  Google Scholar 

  39. Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In: Polthier K, Sheffer A (eds) Eurographics symposium on geometry processing, Eurographics Association

    Google Scholar 

  40. Dellepiane M, Callieri M, Corsini M, Cignoni P, Scopigno R (2010) Improved color acquisition and mapping on 3D models via flash-based photography. ACM J Comput Cult Herit 2:1–20

    Article  Google Scholar 

  41. OpenMVG: https://openmvg.readthedocs.io/en/latest/software/MVS/OpenMVS/

  42. MeshLab: http://www.meshlab.net

  43. Cignoni P, Callieri M, Corsini M, Dellepiane M, Ganovelli F, Ranzuglia G (2008) MeshLab: an open-source mesh processing tool. In: Proc. Eurographics Italian chapter conference, pp 129–136

    Google Scholar 

  44. Callieri M, Cignoni P, Corsini M, Scopigno R (2008) Masked photo blending: mapping dense photographic dataset on high-resolution 3D models. Comput Graph 32(4):464–473

    Article  Google Scholar 

  45. Corsini M, Dellepiane M, Ponchio F, Scopigno R (2009) Image-to-geometry registration: a mutual information method exploiting illumination-related geometric properties. Computer Graphics Forum 28(7):1755–1764. https://doi.org/10.1111/j.1467-8659.2009.01552.x

    Article  Google Scholar 

  46. Chandler JH (2010) Tips for the effective use of close-range digital photogrammetry for the Earth sciences. ISPRS Commission V, Working Group V/6. Available at: http://isprsv6.lboro.ac.uk/tips.html. Accessed 29 Sept 2019

  47. Wackrow R (2008) Spatial measurement with consumer grade digital cameras. PhD thesis, Loughborough University. Available at: https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/3827. Accessed 29 Sept 2019

  48. Nocerino E, Menna F, Remondino F, Saleri R (2013) Accuracy and block deformation analysis in automatic UAV and terrestrial photogrammetry: lesson learnt, ISPRS annals II-5/W1 203–8

    Google Scholar 

  49. Bedford J (2017) Photogrammetric applications for cultural heritage. Guidance for good practice. Historic England, Swindon

    Google Scholar 

  50. Aerial Survey Base (2019) What is GSD. https://www.aerial-survey-base.com/gsd-calculator/what-is-gsd/

  51. Agisoft: https://www.agisoft.com/

  52. Abdelaziz M, Elsayed M (2019) Underwater photogrammetry digital surface model (DSM) of the submerged site of the ancient lighthouse near Qaitbay Fort in Alexandria, Egypt, Proc. the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W10, 2019. Underwater 3D recording and modelling “a tool for modern applications and CH recording”, 2–3 May 2019, Limassol, Cyprus

    Google Scholar 

  53. Barelli L, Paolini P, Forti G (2017) The XII century towers, a benchmark of the Rome countryside almost cancelled: the safeguard plan by low cost UAV and terrestrial DSM photogrammetry surveying and 3D web GIS applications, Proc. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XLII-2/W8, 2017. 5th international workshop LowCost 3D – sensors, algorithms, applications, 28–29 November 2017, Hamburg, Germany

    Google Scholar 

  54. Shafqat Malik U, Guidi G (2018) Massive 3D digitization of sculptures: methodological approaches for improving efficiency. In: Florence Heri-Tech – the future of heritage science and technologies. IOP Conf. Ser.: Mater. Sci. Eng. 364, p 012015

    Google Scholar 

  55. Remondino F, Nocerino E, Toschi I, Menna F (2017) A critical review of automated photogrammetric processing of large datasets. Int Arch Photogramm Remote Sens Spat Inf Sci – ISPRS Arch, International Society for Photogrammetry and Remote Sensing: 591–599. https://doi.org/10.5194/isprs-archives-XLII-2-W5-591-2017

  56. Becker S, Spranger M, Heinke F, Grunert S, Labudde D (2018) A comprehensive framework for high resolution image-based 3D modeling and documentation of crime scenes and disaster sites. Int J Adv Syst 11:1–12

    Google Scholar 

  57. Koutsoudis A, Vidmar B, Ioannakis G, Arnaoutoglou F, Pavlidis G, Chamzas C (2014) Multi-image 3D reconstruction data evaluation. J Cult Herit 15(1):73–79. https://doi.org/10.1016/j.culher.2012.12.003

    Article  Google Scholar 

  58. Pix4d: https://www.pix4d.com

  59. Murtiyoso A, Frussenmeyer P, Koehl M, Freville T (2016) Acquisition and Processing experiences of close-range UAV images for the 3d modeling of Hertitage Buildings. In: Ioannides M et al (eds) EuroMed 2016, part 1, LNCS 10058. Springer International Publishing AG, pp 420–431. https://doi.org/10.1007/978-3-319-48496-9_34

    Chapter  Google Scholar 

  60. Gagliolo S, Ausonio E, Federici B, Ferrando I, Passoni D, Sguerso D (2018) 3D cultural heritage documentation: a comparison between different photogrammetric software and their products. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2). ISPRS TC II mid-term symposium “towards photogrammetry 2020”, 4–7 June 2018, Riva del Garda, Italy

    Google Scholar 

  61. Landauer J Towards automating drone flights for archaeological site documentation. Conference: International Aerial Archaeology Conference AARG 2018, Venice, Italy, 2018. Available at: ResearchGate

    Google Scholar 

  62. Reality Capture: https://www.capturingreality.com

  63. Zamani: Preserving Sri Lanka’s heritage: https://www.capturingreality.com/Article-Zamani-SriLanka-Project

  64. Marie-Antoinette’s hamlet in VR: https://www.capturingreality.com/Article-Marie-Antoinette-hamlet-in-VR

  65. CyArk and RealityCapture: https://www.capturingreality.com/Article-CyArk-and-RealityCapture

  66. Factum Foundation and RealityCapture: https://www.capturingreality.com/Article-FactumFoundation-and-RC

  67. Niederheiser R, Mokroš M, Lange J, Petschko H, Prasicek G, Elberink SO (2016) Deriving 3D point clouds from terrestrial photographs-comparison of different sensors and software. Int Arch Photogramm Remote Sens Spat Inf Sci ISPRS Arch 41:685–692

    Article  Google Scholar 

  68. Burns JHR, Delparte D (2017) Comparison of commercial structure-from-motion photogrammety software used for underwater three-dimensional modeling of coral reef environments. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2)/W3. 3D virtual reconstruction and visualization of complex architectures, 1–3 March 2017, Nafplio, Greece

    Google Scholar 

  69. Alidoost F, Arefi H (2017) Comparison of UAS-based photogrammetry software for 3D point cloud generation: a survey over a historical site, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4(4)/W4. 4th international GeoAdvances workshop, 14–15 October 2017, Safranbolu, Karabuk, Turkey

    Google Scholar 

  70. Rahaman H, Champion E (2019) To 3D or not 3D: choosing a photogrammetry workflow for cultural heritage groups. Heritage 2(3):1835–1851. https://doi.org/10.3390/heritage2030112

    Article  Google Scholar 

  71. VisualSFM: http://ccwu.me/vsfm/

  72. Furukawa Y, Ponce J (2007) Accurate, dense, and robust multi-view stereopsis. In: Proc. IEEE conference on computer vision and pattern recognition (CVPR), 17–22 June, Minneapolis, USA, pp 1–8

    Google Scholar 

  73. Jancosek M, Pajdla T (2011) Multi-view reconstruction preserving weakly-supported surfaces. In: Proc. IEEE conference on computer vision and pattern recognition. https://doi.org/10.1109/CVPR.2011.599569

  74. Fuhrmann S, Langguth F, Goesele M MVE – a multi-view reconstruction environment. In: Proc. Eurographics workshop on graphics and cultural heritage, Darmstadt, Germany, 2014

    Google Scholar 

  75. Rothermel M, Wenzel K, Fritsch D, Haala N SURE: photogrammetric surface reconstruction from imagery. In: Proc. LC3D workshop, Berlin, December 2012

    Google Scholar 

  76. Kang Z, Medioni G (2015) 3D urban reconstruction from wide area aerial surveillance video. In: Applications and Computer Vision Workshops (WACVW), IEEE Winte

    Google Scholar 

  77. COLMAP: https://colmap.github.io

  78. Schönberger JL (2018) Robust methods for accurate and efficient 3D modeling from unstructured imagery. ETH Zürich

    Google Scholar 

  79. Bianco S, Ciocca G, Marelli D (2018) Evaluating the performance of structure from motion pipelines. J Imaging 4(8):98. https://doi.org/10.3390/jimaging4080098

    Article  Google Scholar 

  80. Kazhdan M, Hoppe H (2013) Screened poisson surface reconstruction. ACM Trans Graph 32(3): 29, 13 pages. https://doi.org/10.1145/2487228.2487237

  81. OpenMVG: https://openmvg.readthedocs.io/en/latest/

  82. OpenMVS: https://openmvg.readthedocs.io/en/latest/software/MVS/OpenMVS/

  83. Alcantarilla PF, Nuevo J, Bartoli A (2013) Fast explicit diffusion for accelerated features in nonlinear scale spaces, British Machine Vision Conference. Available at: http://www.bmva.org/bmvc/2013/Papers/paper0013/paper0013.pdf

  84. Tareen SAK, Saleem Z A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. In: 2018 international conference on computing, mathematics and engineering technologies (iCoMET), Sukkur, 2018, pp 1–10. https://doi.org/10.1109/ICOMET.2018.8346440

  85. Tiano P, Tapete D, Matteini M, Ceccaroni F The micro-photogrammetry: a new diagnostic tool for onsite monitoring of monumental surfaces. In: Proc. international workshop SMW08 In situ monitoring of monumental surface, 27 Oct 2008

    Google Scholar 

  86. Yanagi H, Chikatsu H (2010) 3D modeling of small objects using macro lens in digital very close-range photogrammetry. ISPRS Arch 38:617–622

    Google Scholar 

  87. Alby E, Smigiel E, Assali P, Grussenmeyer P, Kauffmann-Smigiel I Low cost solutions for dense point clouds of small objects: photomodeler scanner vs. David laserscanner, 22nd CIPA symposium, Kyoto, October 11–15, 2009

    Google Scholar 

  88. Samaan M, Héno R, Pierrot-Deseilligny M (2013) Close-range photogrammetric tools for small 3D archeological objects. Int Arch Photogramm Remote Sens Spat Inf Sci 40:549–553

    Google Scholar 

  89. Galantucci LM, Pesce M, Lavecchia F (2016) A powerful scanning methodology for 3D measurements of small parts with complex surfaces and sub millimetre-sized features, based on close range photogrammetry. Precis Eng 43:211–219

    Article  Google Scholar 

  90. Marroquim R, Sá A, Rodrigues K, Balbio V, Zamorano R (2017) Digitising ivory artefacts at the National History Museum in Brazil, Eurographics workshop on graphics and cultural heritage

    Google Scholar 

  91. Processing: https://processing.org/reference/environment/

  92. Sketchfab: https://sketchfab.com

  93. Mu3D Project: https://www.proyectosciop.unlp.edu.ar/mu3d/wp/

  94. Mazuryk T, Gervautz M (1999) Virtual reality – history, applications, technology and future. Institute of Computer Graphics. Vienna University of Technology, Austria. https://www.cg.tuwien.ac.at/research/publications/1996/mazuryk-1996-VRH/TR-186-2-96-06Paper.pdf

  95. Milgram P, Takemura H, Utsumi A, Kishino F (1995) Augmented reality: a class of displays on the reality-virtuality continuum. In: Telemanipulator and telepresence technologies, vol 2351. International Society for Optics and Photonics, pp 282–293

    Chapter  Google Scholar 

  96. Muñoz Morcillo J, Faion F, Zea A, Hanebeck UD (2016) E-Installation: synesthetic documentation of media art via telepresence technologies. In: Dan MB, Crăciun C (eds) Space and time visualization. Springer Nature, pp 173–191

    Chapter  Google Scholar 

  97. Krause. Vestigios disponibles. Web version: https://www.proyectosciop.unlp.edu.ar/mu3d/Krause%20Web/

  98. Virtual Collections. Web version: https://www.proyectosciop.unlp.edu.ar/mu3d/Krause%20Web/https://www.proyectosciop.unlp.edu.ar/mu3d/Colecciones%20Virtuales%20Web/

  99. MusAR augmented reality app: https://play.google.com/store/apps/details?id=com.ciop.musar&hl=en

Download references

Acknowledgments

This work has been supported by a PIT-AP-BA project of the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-BA) and by the Projects 11/I199 and I240 of Facultad de Ingeniería, Universidad Nacional de La Plata.

M.M. Morita is Research Member at Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). D.A. Loaiza Carvajal is PhD fellow at Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). G.M. Bilmes is Research Member at Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-BA) and Full Professor at Facultad de Ingeniería, Universidad Nacional de La Plata (FI-UNLP).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Morita, M.M., Loaiza Carvajal, D.A., Bilmes, G.M. (2022). New Photogrammetric Systems for Easy low-Cost 3D Digitization of Cultural Heritage. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_49

Download citation

Publish with us

Policies and ethics