Skip to main content

3D Digitization of Tangible Heritage

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis

Abstract

Digitization of tangible entities is the process that focuses on the transformation of the real world and its features to a virtual world, the digital world of computing devices. This virtual world comes along with a typical set of rules, benefits, limitations, and opportunities. As this world is mathematically digital, every virtual entity is discretized and quantized, being only an approximation of its real counterpart, or “source,” or “parent.” Digitized tangible entities run a parallel life, potentially a life with no ending, as the most apparent benefit of the virtual world is the long-lasting presence. Since tangible heritage entities constitute the most radiant examples of human civilization, they are the obvious targets for digitization. Particularly, since these entities are of three dimensions (3D), their digitization should also follow the 3D world representation; let us forget the fourth dimension, time, in this case, since this is the dimension that can be “frozen” with 3D digitization. 3D digitization of precious entities not only safeguards them in the virtual world but also opens up new horizons for presentation, knowledge dissemination, research and study, conservation, and even physical duplication. In order for these horizons to actually open, human ingenuity with long-lasting and painstaking research and development resulted a number of 3D digitization methods, all targeting the best possible result in terms of an accurate virtual replication. This is the focus of this chapter, in which an attempt is made to explain the ideas and inner workings of the various 3D digitization methods that have been invented during the last half of the twentieth century and the beginning of the twenty-first.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cutting JE, Vishton PM (1995) Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. In: Perception of space and motion. Elsevier, pp 69–117

    Chapter  Google Scholar 

  2. Beraldin J-A, Blais F, Cournoyer L, Godin G, Rioux M, Taylor J (2004) Active 3D sensing for heritage applications. Bar International Series 1227. TEMPUS REPARATSM, pp 340–343

    Google Scholar 

  3. Boehler W, Marbs A (2002) 3D scanning instruments. Proceedings of the CIPA WG 6, pp 9–18

    Google Scholar 

  4. Forest J, Salvi J, Cabruja E, Pous C (2004) Laser stripe peak detector for 3D scanners. A FIR filter approach. In: Pattern recognition, 2004. ICPR 2004. Proceedings of the 17th international conference on, vol 3, pp 646–649

    Google Scholar 

  5. Cortelazzo GM, Marton F (1999) About modeling cultural heritage objects with limited computers resources. In: Image analysis and processing, 1999. Proceedings. international conference on, pp 848–853

    Google Scholar 

  6. Rioux M (1994) Digital 3D imaging: theory and applications. Videometrics III 2350:2–16

    Article  Google Scholar 

  7. Curless B, Levoy M (1995) Better optical triangulation through spacetime analysis. In: ICCV, p 987

    Google Scholar 

  8. Sobieszek RA (1980) Sculpture as the sum of its profiles: Francois Willeme and photosculpture in France, 1859–1868. Art Bull 62(4):617–630

    Google Scholar 

  9. Baumgart BG (1974) Geometric modeling for computer vision

    Google Scholar 

  10. Martin WN, Aggarwal JK (1983) Volumetric descriptions of objects from multiple views. IEEE Trans Pattern Anal Mach Intell 2:150–158

    Article  Google Scholar 

  11. Zhang Z (1998) Modeling geometric structure and illumination variation of a scene from real images. In: Computer vision, 1998. Sixth international conference on, pp 1041–1046

    Google Scholar 

  12. Tosovic S, Sablatnig R, Kampel M (2002) On combining shape from silhouette and shape from structured light

    Google Scholar 

  13. Laurentini A (1994) The visual hull concept for silhouette-based image understanding. IEEE Trans Pattern Anal Mach Intell 16(2):150–162

    Article  Google Scholar 

  14. Sablatnig R, Tosovic S, Kampel M (2003) Next view planning for shape from silhouette, computer vision (CVWW’03), Czech Pattern Recognition Society, pp 77–82

    Google Scholar 

  15. Baumberg A, Lyons A, Taylor R (2005) 3D SOM – a commercial software solution to 3D scanning. Graph Model 67(6):476–495

    Article  Google Scholar 

  16. Potmesil M (1987) Generating octree models of 3D objects from their silhouettes in a sequence of images. Comp Vision Graph Image Process 40(1):1–29

    Article  Google Scholar 

  17. Noborio H, Fukuda S, Arimoto S (1988) Construction of the octree approximating a three-dimensional object by using multiple views. IEEE Trans Pattern Anal Mach Intell 10(6):769–782

    Article  Google Scholar 

  18. Ahuja N, Veenstra J (1989) Generating octrees from object silhouettes in orthographic views. IEEE Trans Pattern Anal Mach Intell 11(2):137–149

    Article  Google Scholar 

  19. Matsumoto Y, Terasaki H, Sugimoto K, Arakawa T (1997) A portable three-dimensional digitizer. In: 3-D digital imaging and modeling, 1997. Proceedings. International conference on recent advances in, pp 197–204

    Google Scholar 

  20. Lensch HP, Heidrich W, Seidel H-P (2001) A silhouette-based algorithm for texture registration and stitching. Graph Model 63(4):245–262

    Article  Google Scholar 

  21. Loop C, Zhang Z (1999) Computing rectifying homographies for stereo vision. In: Proceedings. 1999 IEEE Computer Society conference on computer vision and pattern recognition (Cat. No PR00149), vol 1, pp 125–131

    Google Scholar 

  22. Scharstein D, Szeliski R (2002) A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int J Comput Vis 47(1–3):7–42

    Article  Google Scholar 

  23. Bertozzi M, Broggi A, Conte G, Fascioli A (2002) Stereo-vision system performance analysis. In: Enabling technologies for the PRASSI autonomous robot, pp 68–73

    Google Scholar 

  24. Szeliski R (2011) Computer vision – algorithms and applications. Springer, London

    Google Scholar 

  25. Zanuttigh P, Marin G, Dal Mutto C, Dominio F, Minto L, Cortelazzo GM (2016) Operating principles of structured light depth cameras. In: Time-of-flight and structured light depth cameras. Springer, pp 43–79

    Google Scholar 

  26. Salvi J, Pages J, Batlle J (2004) Pattern codification strategies in structured light systems. Pattern Recogn 37(4):827–849

    Article  Google Scholar 

  27. Rocchini C, Cignoni P, Montani C, Pingi P, Scopigno R (2001) A low cost 3D scanner based on structured light. Comput Graphics Forum 20:299–308

    Article  Google Scholar 

  28. Horn E, Kiryati N (1999) Toward optimal structured light patterns. Image Vis Comput 17(2):87–97

    Article  Google Scholar 

  29. Chen C-S, Hung Y-P, Chiang C-C, Wu J-L (1997) Range data acquisition using color structured lighting and stereo vision. Image Vis Comput 15(6):445–456

    Article  Google Scholar 

  30. Wust C, Capson DW (1991) Surface profile measurement using color fringe projection. Mach Vis Appl 4(3):193–203

    Article  Google Scholar 

  31. Horn BK (1975) Obtaining shape from shading information. In: The psychology of computer vision. McGraw-Hill Book Co., New York, pp 115–155

    Google Scholar 

  32. Brooks MJ (1983) Two results concerning ambiguity in shape from shading. AAAI 83

    Google Scholar 

  33. Oliensis J (1991) Shape from shading as a partially well-constrained problem. CVGIP: Image Underst 54(2):163–183

    Article  Google Scholar 

  34. Oliensis J (1991) Uniqueness in shape from shading. Int J Comput Vis 6(2):75–104

    Article  Google Scholar 

  35. Rouy E, Tourin A (1992) A viscosity solutions approach to shape-from-shading. SIAM J Numer Anal 29(3):867–884

    Article  Google Scholar 

  36. Belhumeur PN, Kriegman DJ, Yuille AL (1999) The bas-relief ambiguity. Int J Comput Vis 35(1):33–44

    Article  Google Scholar 

  37. Durou J-D, Piau D (2000) Ambiguous shape from shading with critical points. J Math Imaging Vision 12(2):99–108

    Article  Google Scholar 

  38. Prados E, Faugeras OD (2003) “Perspective shape from shading” and viscosity solutions.. In: ICCV, vol 3, p 826

    Google Scholar 

  39. Prados E, Faugeras O (2006) Shape from shading. In: Handbook of mathematical models in computer vision. Springer, pp 375–388

    Chapter  Google Scholar 

  40. Zhang R, Tsai P-S, Cryer JE, Shah M (1999) Shape-from-shading: a survey. IEEE Trans Pattern Anal Mach Intell 21(8):690–706

    Article  Google Scholar 

  41. Horn BK, Sjoberg RW (1978) Calculating the reflectance map

    Google Scholar 

  42. Wu Y (2003) Radiometry, BRDF and photometric stereo. Evanston

    Google Scholar 

  43. Woodham RJ (1980) Photometric method for determining surface orientation from multiple images. Opt Eng 19(1):139–144

    Article  Google Scholar 

  44. U. S. N. B. of Standards, Nicodemus FE (1977) Geometrical considerations and nomenclature for reflectance, vol 160. US Department of Commerce, National Bureau of Standards

    Google Scholar 

  45. Christensen PH, Shapiro LG (1994) Three-dimensional shape from color photometric stereo. Int J Comput Vis 13(2):213–227

    Article  Google Scholar 

  46. Hertzmann A, Seitz SM (2005) Example-based photometric stereo: shape reconstruction with general, varying BRDFS. IEEE Trans Pattern Anal Mach Intell 27(8):1254–1264

    Article  Google Scholar 

  47. Verma CS, Wu M-J (2009) Photometric stereo

    Google Scholar 

  48. Fulcoly DO, Kalamaroff KI, Chun F (2012) Determining basic satellite shape from photometric light curves. J Spacecr Rocket 49(1):76–82

    Article  Google Scholar 

  49. Yeh C-K, Li F, Pastorelli G, Walton M, Katsaggelos AK, Cossairt O (2017) Shape-from-shifting: uncalibrated photometric stereo with a mobile device. In: 2017 IEEE 13th international conference on e-Science (e-Science), pp 551–558

    Google Scholar 

  50. Aloimonos J, Chou PB (1985) Detection of surface orientation and motion from texture: 1. The case of planes. Department of Computer Science, University of Rochester

    Google Scholar 

  51. Aloimonos J (1988) Shape from texture. Biol Cybern 58(5):345–360

    Article  Google Scholar 

  52. Kanatani K-i, Chou T-C (1989) Shape from texture: general principle. Artif Intell 38(1):1–48

    Article  Google Scholar 

  53. Forsyth DA (2002) Shape from texture without boundaries. In: European conference on computer vision, pp 225–239

    Google Scholar 

  54. Kanatani K-I (2012) Group-theoretical methods in image understanding, vol 20. Springer Science & Business Media

    Google Scholar 

  55. Gibson JJ (1950) The perception of the visual world. Houghton Mifflin

    Google Scholar 

  56. Pentland A (1985) A new sense for depth of field. In: Proceedings of the ninth international joint conference on artificial intelligence, Los Angeles, pp 988–994

    Google Scholar 

  57. Pentland AP (1987) A new sense for depth of field. IEEE Trans Pattern Anal Mach Intell 4:523–531

    Article  Google Scholar 

  58. Grossmann P (1987) Depth from focus. Pattern Recogn Lett 5(1):63–69

    Article  Google Scholar 

  59. Subbarao M (1987) Direct recovery of depth-map II: a new robust approach

    Google Scholar 

  60. Darrell T, Wohn K (1988) Pyramid based depth from focus. In: Proceedings CVPR’88: the Computer Society conference on computer vision and pattern recognition, pp 504–509

    Google Scholar 

  61. Ohta T, Sugihara K, Sugie N (1988) A method for image composition using image variance. Trans IECE 66(10):1245–1246

    Google Scholar 

  62. Kaneda K, Wakasu Y, Nakamae E, Tazawa E (1988) A method of pan-focused and stereoscopic display using a series of optical microscopic images. In: Proceedings of fourth symposium on image sensing technologies in industry, pp 189–194

    Google Scholar 

  63. Nayar SK (1989) Shape from focus

    Google Scholar 

  64. Nakagawa Y, Nayer SK (1992) Method of detecting solid shape of object with autofocusing and image detection at each focus level, US Patent 5,151,609, Google Patents

    Google Scholar 

  65. Ens J, Lawrence P (1993) An investigation of methods for determining depth from focus. IEEE Trans Pattern Anal Mach Intell 15(2):97–108

    Article  Google Scholar 

  66. Xiong Y, Shafer SA (1993) Depth from focusing and defocusing. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 68–73

    Google Scholar 

  67. Favaro P (2000) Shape from focus/defocus. Washington University

    Google Scholar 

  68. Das S, Ahuja N (1995) Performance analysis of stereo, vergence, and focus as depth cues for active vision. IEEE Trans Pattern Anal Mach Intell 17(12):1213–1219

    Article  Google Scholar 

  69. Chaudhuri S, Rajagopalan A (1999) Depth from defocus: a real aperture imaging approach. Springer Science & Business Media

    Book  Google Scholar 

  70. Bailey SW, Echevarria JI, Bodenheimer B, Gutierrez D (2015) Fast depth from defocus from focal stacks. Vis Comput 31(12):1697–1708

    Article  Google Scholar 

  71. Suwajanakorn S, Hernandez C, Seitz SM (2015) Depth from focus with your mobile phone. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3497–3506

    Google Scholar 

  72. Tang H, Cohen S, Price B, Schiller S, Kutulakos KN (2017) Depth from defocus in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2740–2748

    Google Scholar 

  73. Hazirbas C, Soyer S, Staab M, Leal-Taixe L, Cremers D, Mayer N, Ilg E, Fischer P, Dosovitskiy A, Brox T (2018) Deep depth from focus. IJCV

    Google Scholar 

  74. Shafer SA, Kanade T (1983) Using shadows in finding surface orientations. Comput Vis Graph Image Process 22(1):145–176

    Article  Google Scholar 

  75. Hatzitheodorou M, Kender JR (1988) An optimal algorithm for the derivation of shape from shadows. In: Proceedings CVPR’88: the Computer Society conference on computer vision and pattern recognition, pp 486–491

    Google Scholar 

  76. Raviv D, Pao Y-H, Loparo KA (1989) Reconstruction of three-dimensional surfaces from two-dimensional binary images. IEEE Trans Robot Autom 5(5):701–710

    Article  Google Scholar 

  77. Langer MS, Dudek G, Zucker SW (1995) Space occupancy using multiple shadow images. In: Proceedings 1995 IEEE/RSJ international conference on intelligent robots and systems. Human robot interaction and cooperative robots, vol 1, pp 285–290

    Google Scholar 

  78. Yang DK-M (1996) Shape from darkness under error. PhD thesis. Columbia University

    Google Scholar 

  79. Daum M, Dudek G (1998) On 3-D surface reconstruction using shape from shadows. In: Proceedings. 1998 IEEE Computer Society conference on computer vision and pattern recognition (Cat. No. 98CB36231), pp 461–468

    Google Scholar 

  80. Savarese S, Rushmeier H, Bernardini F, Perona P (2001) Shadow carving. In: Proceedings eighth IEEE international conference on computer vision. ICCV 2001, vol 1, pp 190–197

    Google Scholar 

  81. Savarese S, Rushmeier H, Bernardini F, Perona P (2002) Implementation of a shadow carving system for shape capture. In: Proceedings. First international symposium on 3D data processing visualization and transmission, pp 12–23

    Google Scholar 

  82. Savarese S, Andreetto M, Rushmeier H, Bernardini F, Perona P (2007) 3d reconstruction by shadow carving: theory and practical evaluation. Int J Comput Vis 71(3):305–336

    Article  Google Scholar 

  83. Yu Y, Chang JT (2005) Shadow graphs and 3D texture reconstruction. Int J Comput Vis 62(1–2):35–60

    Article  Google Scholar 

  84. Abrams A, Miskell K, Pless R (2013) The episolar constraint: monocular shape from shadow correspondence. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1407–1414

    Google Scholar 

  85. Bouguet J-Y, Perona P (1998) 3D photography on your desk. In: Computer vision, 1998. Sixth international conference on, pp 43–50

    Google Scholar 

  86. Kawasaki H, Furukawa R (2009) Shape reconstruction and camera self-calibration using cast shadows and scene geometries. Int J Comput Vis 83(2):135

    Article  Google Scholar 

  87. Oliensis J (2000) A critique of structure-from-motion algorithms. Comput Vis Image Underst 80(2):172–214

    Article  Google Scholar 

  88. Furukawa Y, Hernandez C (2015) Multi-view stereo: a tutorial. Found Trends Comput Graph Vis 9(1–2):1–148

    Article  Google Scholar 

  89. Lowe DG (1999) Object recognition from local scale-invariant features. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol 2, pp 1150–1157

    Google Scholar 

  90. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: European conference on computer vision, pp 404–417

    Google Scholar 

  91. Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of multi-view stereo reconstruction algorithms. In: 2006 IEEE Computer Society conference on computer vision and pattern recognition (CVPR’06), vol 1, pp 519–528

    Google Scholar 

  92. Koutsoudis A, Ioannakis G, Vidmar B, Arnaoutoglou F, Chamzas C (2015) Using noise function-based patterns to enhance photogrammetric 3D reconstruction performance of featureless surfaces. J Cult Herit 16(5):664–670

    Article  Google Scholar 

  93. Baltsavias EP (1991) Multiphoto geometrically constrained matching. PhD thesis, Columbia University

    Google Scholar 

  94. Baltsavias E, Li H, Mason S, Stefanidis A, Sinning M (1996) Comparison of two digital photogrammetric systems with emphasis on DTM generation: case study glacier measurement. Int Arch Photogramm Remote Sens 31:104–109

    Google Scholar 

  95. Mallick SP, Zickler TE, Kriegman DJ, Belhumeur PN (2005) Beyond lambert: reconstructing specular surfaces using color. In: 2005 IEEE Computer Society conference on computer vision and pattern recognition (CVPR’05), vol 2, pp 619–626

    Google Scholar 

  96. Remondino F, El-Hakim S, Gruen A, Zhang L (2008) Development and performance analysis of image matching for detailed surface reconstruction of heritage objects. IEEE Signal Process Mag 25(4):55–65

    Article  Google Scholar 

  97. Guidi G, Gonizzi S, Micoli L (2014) Image pre-processing for optimizing automated photogrammetry performances. In: ISPRS Technical Commission V symposium, vol 2, pp 145–152

    Google Scholar 

  98. MacDonald L, Hindmarch J, Robson S, Terras M (2014) Modelling the appearance of heritage metallic surfaces. Int Arch Photogramm Remote Sens Spat Inf Sci 45:371–377

    Google Scholar 

  99. Gaiani M, Remondino F, Apollonio F, Ballabeni A (2016) An advanced preprocessing pipeline to improve automated photogrammetric reconstructions of architectural scenes. Remote Sens 8(3):178

    Article  Google Scholar 

  100. Nikolov I, Madsen C (2016) Benchmarking close-range structure from motion 3D reconstruction software under varying capturing conditions. In: Euro-Mediterranean conference, pp 15–26

    Google Scholar 

  101. Ioannakis G, Koutsoudis A, Arnaoutoglou F, Kiourt C, Chamzas C (2017) On structure-from-motion application challenges: good practices. Int J Comput Methods Herit Sci (IJCMHS) 1(2):47–57

    Article  Google Scholar 

  102. Patias P (1999) Photogrammetric survey and documentation of architectural monuments and archaeological sites

    Google Scholar 

  103. Tziavos I, Spatalas S (2004) Urban design applications and topographic surveys

    Google Scholar 

  104. Daniil M (2009) Topography – topographic mapping of space

    Google Scholar 

  105. Vlachos D (1998) Principles and methods of topographic recording

    Google Scholar 

  106. Godin G, Rioux M, Beraldin J-A, Levoy M, Cournoyer L, Blais F (2001) An assessment of laser range measurement on marble surfaces. In: 5th conference on optical 3D measurement techniques, vol 3

    Google Scholar 

  107. Hawkins T, Cohen J, Debevec P (2001) A photometric approach to digitizing cultural artifacts. In: Proceedings of the 2001 conference on virtual reality, archeology, and cultural heritage, pp 333–342

    Google Scholar 

  108. Marbs A (2002) Experiences with laser scanning at i3mainz. In: Proceedings of the CIPA WG6 international workshop on scanning for cultural heritage recording. http://www.isprs.org/commission5/workshop

  109. Koutsoudis A, Vidmar B, Ioannakis G, Arnaoutoglou F, Pavlidis G, Chamzas C (2014) Multi-image 3D reconstruction data evaluation. J Cult Herit 15(1):73–79

    Article  Google Scholar 

  110. Streilein A, van den Heuvel FA (1999) Potential and limitation for the 3D documentation of cultural heritage from a single image. In: Proceedings XVII CIPA symposium October, vol 99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George Pavlidis or Anestis Koutsoudis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pavlidis, G., Koutsoudis, A. (2022). 3D Digitization of Tangible Heritage. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_47

Download citation

Publish with us

Policies and ethics