Skip to main content

Archaeometallurgy: A Discipline Between Past and Future

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis
  • 3045 Accesses

Abstract

1. A Brief History

The determining role of metals in the development of civilization was already understood in antiquity. Since the end of the eighteenth century ancient metal objects started to be scientifically characterized. In the first half of the nineteenth century, the Positivists thought that the chemical investigations of ancient metals could solve historical and archaeological problems. Ancient metals became the object of relevant, ambitious, and extensive analytical investigations from the mid-1900s. At the same time, scholars such as Gordon Childe, Leroi-Gourhan, Stanley Smith, Tylecote, and Chernykh created a theoretical framework for archaeometallurgical studies. By the end of the twentieth century, relevant projects were published and new research fields explored.

2. Analytical Techniques

Archaeometallurgy is a multidisciplinary research field, where the analyses are carried out on archaeological and artistic artifacts to provide an answer to specific problems. The study of ancient metals is a preferential research field for nondestructive and noninvasive investigations, for example, X-rays, γ rays, ultrasonics, acoustic emission, and XRF. Anyhow, modern analytical techniques allow taking samples of very small dimensions: we can speak of minimally invasive investigations, for example, spectrometry (MS, NAA, AES) and metallography (optical and SEM). ICP-MS plays relevant roles in provenance studies by detecting the Pb isotopic composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Thompsen CJ (1836) Ledetraad til Nordisk Oldkyndighed. S.L. Møllers bogtr, Kjöbenhavn

    Google Scholar 

  2. Dizé M, D’Arcet M (1790) Analyse du cuivre, avec lequel les Anciens fabriquoient leurs Médailles, les Instrumens tranchant, Observations et Mémoirs sur la physique, sur l'histoire naturelle et sur les arts et métiers. Journal de physique, de chimie, d'histoire naturelle et des arts XXXVI, I, 272–276, Avril, Paris

    Google Scholar 

  3. Wiegleb JC (1778) Chemisch Untersuchung einiger künstlichen Metallarten, woraus verschiedene aus dem Altertum herrührende Instrumente versertiget gewesen, welche im vorigen Jahre in einer benachbarten Gegend gefunden worden find, Acta Academiae Electoralis Moguntinae Scientarium Utilium, quae Erfurti est ab annum MDCCLLVII, 50–57, Erfurti

    Google Scholar 

  4. Hjelm PJ (1797) Om konsten at härda Koppar, Kongl. Vetenskaps Academiens nya handlingar för Mon. Apr.–Juni XVIII, 98–110

    Google Scholar 

  5. Mongez A (1800) Mémoires sur le bronze des Anciens, Mémoires de l'Institut national des sciences et arts. Littérature et beaux-arts 5:187–516

    Google Scholar 

  6. Pownall G (1786) An account of some Irish antiquities, Archaeologia, or Miscellaneous tracts relating to antiquity, III, 355–356

    Google Scholar 

  7. Klaproth MH (1798) Mémoire de numismatique docimastique, Mémoires de l’académie Royale des Sciences et Belles-lettres depuis l’avénement de Fréderic Guillaume II au Trône, Classe de Philosophie Expérimentale, 97–113, Berlin

    Google Scholar 

  8. Becquerel M (1832) De la Cristallisation de quelques Oxides métalliques. Annales de Chimie et de Physique 51:101–106

    Google Scholar 

  9. Hünefeld L, Picht F (1827) Rügens metallische Denkmäler der Vorzeit, vorzugsweise chemisch bearbeitet, und als Beytrag zur vaterländischen Altertumskunde. Leopold Voss, Leipzig

    Google Scholar 

  10. Hausmann JFL (1815) Über die Eisendarstellungsprozesse der Alten. In: Schweigger JSC (ed) Journal für die Chemie und Physik 14. Schrag’sche Buchhandlung, Nürnberg, pp 247–261

    Google Scholar 

  11. Roloff EH (1810) Ueber den Bergwesen und die Metallurgie des alten Spaniens. In: Gehlen AF (ed) Journal für die Chemie, Physik und Mineralogie IX. Realschulbuchhandlung, Berlin, pp 609–652

    Google Scholar 

  12. Boeckh A (1818) Über die antiken laurischen Silberbergwerke in Attika, Abhandlungen der Preußischen Akadademie der Wissenshaften: Historisch-Philologische Klasse, 85–140

    Google Scholar 

  13. Cordellas A (1869) Le Laurium. de Cayer, Marseilles

    Google Scholar 

  14. Mallett JW (1852) Account on a chemical examination of the celtic antiquities in the collection of the Royal Irish Academy Dublin. University Press, Dublin

    Google Scholar 

  15. Mallett JW (1855) Report on the chemical examination of antiquities from the Museum of the Royal Irish Academy. Trans R Irish Acad 22:313–342, V, Science

    Google Scholar 

  16. Göbel F (1842) Über den Einfluß der Chemie auf die Ermittlung der Völker der Vorzeit oder Resultate der chemischen Untersuchung metallischer Alterthümer insbesondere der in den Ostseegouvernements vorkommenden, behufs der Ermittlung der Völker, von welchen sie abstammen. Ferdinand Enke, Erlangen

    Google Scholar 

  17. Dixon C (1831) Some accounts of the lead mines of Ajmer. Gleanings Sci 28:111

    Google Scholar 

  18. Percy J (1870) The metallurgy of lead. John Murray, London

    Google Scholar 

  19. Simonin ML (1858) De l’exploitation des mines et de la métallurgie en Toscane pendant l’Antiquité et le Moyen Age. Annales des Mines V XIV:557–615

    Google Scholar 

  20. Siret E, Siret L (1890) Las Primeras Edades del Metal en el Sudeste de España. Resultados obtenidos en las excavaciones hecas por los autores. Barcelona

    Google Scholar 

  21. Siret L (1909) Villaricos y Herrerías. Antigüedades púnicas, romanas, visigóticas y árabes. Memoria descriptiva e histórica (Establecimiento Tipográfico de Jaime Ratés, Madrid, 1907). Idem: Memorias de la Real Academia de la Historia, XIV, 380–478, Madrid

    Google Scholar 

  22. Mosso A (1908) Le armi più antiche di rame e di bronzo, Memorie della R. Accademia dei Lincei, S. 5A, Classe di scienze morali, storiche e filologiche, XII. Accademia dei Lincei, Roma

    Google Scholar 

  23. Childe VG (1930) The Bronze age. Cambridge University Press, Cambridge

    Google Scholar 

  24. Childe VG (1944) Archaeological ages as technological stages. J R Anthropol Inst G B Irel 74:7–24

    Google Scholar 

  25. Childe VG (1958) The prehistory of European society. Harmondsworth, London

    Google Scholar 

  26. Rowlands MJ (1971) The archaeological interpretation of prehistoric metalworking. World Archaeol 3:210–224

    Article  Google Scholar 

  27. Trigger BG (1986) The role of technology in V. Gordon Childe’s archaeology. Nor Archaeol Rev 19:1–14

    Article  Google Scholar 

  28. Wailes B (1996) V. Gordon Childe and the relations of production. In: Wailes B (ed) Craft specialization and social evolution: in memory of V. Gordon Childe, University Museum monograph 93, University Museum of Archaeology and Anthropology. University of Pennsylvania, Philadelphia, pp 3–14

    Google Scholar 

  29. Childe VG (1956) Society and knowledge. Harper and Brothers, New York

    Google Scholar 

  30. Marx K, Engels F (1932) Die Deutsche Ideologie. Manuscript: First edition Marx-Engels-Lenin-Institut, Moskau, 1845–46

    Google Scholar 

  31. Trigger BG (1989) A history of archaeological thought. Cambridge University Press, Cambridge

    Google Scholar 

  32. Pfaffenberger B (1992) Social anthropology of technology. Annu Rev Anthropol 21:491–516

    Article  Google Scholar 

  33. Pfaffenberger B (1999) Worlds in the making: technological activities and the construction of intersubjective meaning. In: Dobres MA, Hoffman CR (eds) The social dynamics of technology: practice, politics, and world views. Smithsonian Institution Press, Washington, DC, pp 147–166

    Google Scholar 

  34. Leroi-Gourhan A (1964) La Geste et la Parole I: Technique et Langage. Éditions Albin Michel, Paris

    Google Scholar 

  35. Fluzin P (1999) Il processo siderurgico: evoluzione storica e indizi archeometrici. In: Cucini Tizzoni C, Tizzoni M (eds) La miniera perduta. Cinque anni di ricerche archeometallurgiche nel territorio di Bienno. Tipografia Camuna, Breno, pp 61–92

    Google Scholar 

  36. Fluzin P, Benoit P, Kienon HT, Kiethega JB, El Kedim O (1995) Apports de l’archéométie à la restitution de la chaîne opératoire des procédés sidérurgiques directs à partir des vestiges archéologiques; intérêtsdes comparaisons ethnoarchéologiques. In: Magnusson G (ed) The importance of ironmaking. Technical innovation and social change, Papers presented at the Norberg Conference on May 8–13, 1995. Jernkontorets Bergshistoriska Utskott, Stockholm, pp 56–64

    Google Scholar 

  37. Lemonnier P (1986) The study of material culture today: towards an anthropology of technical systems. J Anthropol Archaeol 5:147–186

    Article  Google Scholar 

  38. Dobres MA, Hoffman CR (1994) Social agency and the dynamics of prehistoric technology. J Archaeol Method Theory 1(3):211–258

    Article  Google Scholar 

  39. Stark MT (1998) Technological choices and social boundaries in material culture patterning: an introduction. In: Stark MT (ed) The archaeology of social boundaries. Smithsonian Institution Press, Washington, DC, pp 1–11

    Google Scholar 

  40. Tylecote RF (1962) Metallurgy in archaeology. Edward Arnold, London

    Google Scholar 

  41. Tylecote RF (1987) The early history of metallurgy in Europe. Longman, London/New York

    Google Scholar 

  42. Smith CS (1970) Art, technology, and science: notes on their historical interaction. Technol Cult 11:493–549

    Article  Google Scholar 

  43. Smith CS (1977) Metallurgy as a human experience: an essay on man’s relationship to his materials in science and practice throughout history. American Society for Metals, Metals Park

    Google Scholar 

  44. Smith CS (1981) On art, invention, and technology. In: Smith CS (ed) A search for structure. MIT Press, Cambridge, MA, pp 325–331

    Google Scholar 

  45. Lechtman H (1979) Issues in Andean metallurgy. In: Benson EP (ed) Pre-Columbian metallurgy of South America. Dumbarton Oaks, Washington, DC, pp 1–40

    Google Scholar 

  46. Lechtman H (1984) Andean value systems and the development of prehistoric metallurgy. Technol Cult 25(1):1–36

    Article  Google Scholar 

  47. Lechtman H (1993) Technologies of power: the Andean case. In: Henderson J, Netherly P (eds) Configurations of power in complex societies. Cornell University Press, Ithaca, pp 244–280

    Google Scholar 

  48. Lechtman H (1999) Afterword. In: Dobres M-A, Hoffman CR (eds) The social dynamics of technology. Smithsonian Institution Press, Washington, DC, pp 223–232

    Google Scholar 

  49. Wallerstein I (1974) The modern world-system: capitalist agriculture and the origins of the European world-economy in the sixteenth century, 1. Academic Press, New York

    Google Scholar 

  50. Algaze G (1993) The Uruk world system. University of Chicago Press, Chicago

    Google Scholar 

  51. Chernykh EN, Avilova LI, Orlovskaja LB (2000) Metallurgical provinces and radiocarbon chronology. Rossijskaja Akademija Nauk, Institut Arkheologii, Moscow

    Google Scholar 

  52. Craddock PT (1995) Early metal mining and production. Edinburgh University Press, Edinburgh

    Google Scholar 

  53. Pleiner R (2006) Iron in archaeology. Early European Blacksmiths. Archeologický ústav AVČR, Praha

    Google Scholar 

  54. Mohen J-P (1990) Métallurgie préhistoriques. Introduction à la paléométallurgie. Masson, Paris/Barcelone/Mexico

    Google Scholar 

  55. Otto H (1940) Die Anwendung der Spektranalyse für kulturhistorishen Fragen. Spectrochim Acta 1:381–399

    Google Scholar 

  56. Detsch CH (1928–1938) Reports of the Sumerian Committee, Reports of the meetings of the British Association for the Advancement of Science. Office of the British Association, London

    Google Scholar 

  57. Otto H, Witter W (1952) Handbuch der ältesten vorgeschichtlichen Metallurgie in Mitteleuropa. J. Ambrosius Barth Verlag, Leipzig

    Google Scholar 

  58. Junghans S, Sangmeister E, Schröder M (1960) Studien zu den Anfängen der Metallurgie. Metallanalysen kupferzeitlicher und frübronzezeitlicher Bodefunde aus Europa 1. Gebr. Mann Verlag, Berlin

    Google Scholar 

  59. Junghans S, Sangmeister E, Schröder M (1968) Studien zu den Anfängen der Metallurgie. Kupfer und Bronze in der frühen Metallzeit Europas 2, 1–3. Gebr. Mann Verlag, Berlin

    Google Scholar 

  60. Junghans S, Sangmeister E, Schröder M (1974) Studien zu den Anfängen der Metallurgie. Kupfer und Bronze in der frühen Metallzeit Europas 2, 4. Gebr. Mann Verlag, Berlin

    Google Scholar 

  61. Culberg C (1968) On artifact analysis. Acta Archaeologica Lundensia 4, 7. Gleerup, Lund

    Google Scholar 

  62. Chernykh EN (1992) Ancient metallurgy in the USSR. The early metal age. Cambridge University Press, Cambridge

    Google Scholar 

  63. Stos-Gale ZA, Gale NH (2009) Metal provenancing using isotopes and the Oxford archaeological lead isotope database (OXALID). Archaeol Anthropol Sci 1:195–213

    Article  Google Scholar 

  64. https://oxalid.arch.ox.ac.uk/. Accessed 16 Oct 2019

  65. Gale NH, Stos-Gale ZA (2000) Lead isotope analysis applied to provenance studies. In: Ciliberto E, Spoto G (eds) Modern analytical methods in art and archaeology. Wiley, New York, pp 503–584

    Google Scholar 

  66. Hauptmann A (2009) Lead isotope analysis and the origin of Sardinian metal objects. In: Lo Schiavo F, Muhly JD, Maddin R, Giumlia-Mair A (eds) Oxhide ingots of the central Mediterranean. CNR – Istituto per gli Studi Micenei ed Egeo-Anatolici, Roma, pp 499–514

    Google Scholar 

  67. Rovira S, Montero I, Consuegra S (eds) (1997) Las primeras etapas metalúrgicas en la península Ibérica. I. Análisis de materiales. Instituto Universitario Ortega y Gasset, Madrid

    Google Scholar 

  68. Rovira S, Gòmez Ramos P (eds) (2003) Las primeras etapas metalúrgicas en la península Ibérica. III. Estudio metálograficos. S.n., Madrid

    Google Scholar 

  69. Shennan S (ed) (1989) Archaeological approaches to cultural identity. Unwin Hyman, London

    Google Scholar 

  70. Wright RP (ed) (1996) Gender and archaeology. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  71. Sørensen M-LS (2000) Gender archaeology. Polity Press, Cambridge

    Google Scholar 

  72. Meskell L (2001) Archaeologies of identity. In: Hodder I (ed) Archaeological theory today. Polity Press, Cambridge, pp 187–213

    Google Scholar 

  73. Thornton CP, Giardino C (2008) Alla ricerca di un paradigma archeometallurgico. Rivista di Scienze Preistoriche LVIII:385–404

    Google Scholar 

  74. Bocoum H (ed) (2004) The origins of iron metallurgy in Africa. New light on its antiquity: West and Central Africa. UNESCO Publishing, Paris

    Google Scholar 

  75. Weeks LR (2003) Early metallurgy of the Persian Gulf. Technology, trade, and the Bronze Age world. Brill, Boston

    Book  Google Scholar 

  76. Weisgerber G (2008) Metallurgy in Arabia. In: Selin H (ed) Encyclopaedia of the history of science, technology, and medicine in non-western cultures. Springer, Dordrecht, pp 1613–1622

    Chapter  Google Scholar 

  77. Yule PA, Gernez G (eds) (2018) Early iron age metal-working workshop in the empty quarter, al-Ẓāḥira Province, Sultanate of Oman, Universitätsforschungen zur Prähistorischen Archäologie 316. Halbert-Verlag, Bonn

    Google Scholar 

  78. Giardino C (2019) Magan – the land of copper. Prehistoric metallurgy of Oman. Archaeopress Publishing Ltd, Oxford

    Book  Google Scholar 

  79. Hauptmann A (2000) Zur frühen Metallurgie des Kupfers in Fenan/Jordanien. Der Anschnitt Beiheft 11. Deutsches Bergbau-Museum, Bochum

    Google Scholar 

  80. Hauptmann A, Rehren T, Schmitt-Strecker S (2003) Early bronze age copper metallurgy at Shar-I-Sokhta (Iran) reconsidered. In: Stöllner T, Körlin G, Steffens G, Cierny J (eds) Man and mining – Mensch und Bergbau: studies in honour of Gerd Weisgerber on occasion of his 65th birthday. Der Anschnitt, Beiheft 16. Deutsches Bergbau-Museum, Bochum, pp 197–213

    Google Scholar 

  81. Artioli D, Giardino C, Guida G, Lazzari A, Vidale M (2005) On the exploitation of copper ores at Shahr-i Sokhta (Sistan, Iran) in the 3rd millennium BC. In: Franke-Vogt U, Weisshaar H-J (eds) South Asian archaeology 2003. Proceedings of the seventeenth international conference of South Asian Archaeologists (Bonn 2003). Linden Soft Verlag, Aachen, pp 179–184

    Google Scholar 

  82. Keykhaei M, Valiei MH, Shirazi R, Nadooshan FK (2012) Shahr-i Sokhta and the Bronze production workshop: a review, Interdisciplinaria archaeologica. Nat Sci Archaeol III(2):203–210

    Google Scholar 

  83. Bernard N (1980) The origins and development of metallurgy in China, with special reference to the crucible. In: Loofs-Wissowa HHE (ed) The diffusion of material culture, Asian and Pacific archaeology series 9. University of Hawaii, Honolulu, pp 215–263

    Google Scholar 

  84. Zhimin A (1981) Zhongguo zaoqi tongqi de jige wenti [Some problems concerning China’s early copper and bronze artifacts]. Kaogu Xuebao [Acta Archaeol Sin] 3:269–285

    Google Scholar 

  85. Shuyun S, Rubin H (1981) Gansu zaoqi tongqi de chubu yanjiu [A preliminary study of early Chinese copper and bronze artifacts]. Kaogu Xuebao 2 [Acta Archaeol Sin], 287–301. Translated in English in: Early China 9–10, 261–289 (1983–85)

    Google Scholar 

  86. Yangxiang L (1993) Zhongtiaoshan gutong kuangye yizhi chubu kaocha yanjiu [A preliminary study of ancient copper mining site at the Zhongtiaoshan region]. Q J Cult Relics 2

    Google Scholar 

  87. Jinjun M, Yanxiang L (2003) Early copper technology in Xinjiang, China: the evidence so far. In: Craddock P, Lang J (eds) Mining and metal production through the ages. British Museum Press, London, pp 111–121

    Google Scholar 

  88. Mei J, Wang P, Chen K, Wang L, Wang YC, Liu Y (2015) Archaeometallurgical studies in China: some recent developments and challenging issues. J Archaeol Sci 56:221–232

    Article  Google Scholar 

  89. Ottaway BS (2001) Innovation, production and specialization in early prehistoric copper metallurgy. Eur J Archaeol 4(1):87–112

    Article  Google Scholar 

  90. Rieser B, Schrattenthaler H (2004) Prähistorischer Kupferbergbau im Raum Schwaz/Brixlegg (Nordtirol). Geländebefunde und experimentelle Untersuchungen zur Schlägelschäftung. In: Weisgerber G, Goldenberg G (eds) Alpenkupfer – Rame delle Alpi, Der Anschnitt Beiheft 17. Deutsches Bergbau-Museum, Bochum, pp 75–94

    Google Scholar 

  91. Höppner B, Barteheim M, Huijsmans M, Krauss R, Martinek K-P, Pernicka E, Schwab R (2005) Prehistoric copper production in the Inn Valley (Austria), and the earliest copper in Central Europe. Archaeometry 47(2):293–315

    Article  Google Scholar 

  92. Huijsmans M, Krauß R, Stibich R (2004) Prähistorischer Fahlerzbergbau in der Grauwackenzone. Neolithische und bronzezeitliche Besiedlungsgeschichte und Kupfermetallurgie im Raum Brixlegg (Nordtirol). In: Weisgerber G, Goldenberg G (eds) Alpenkupfer – Rame delle Alpi, Der Anschnitt Beiheft 17. Deutsches Bergbau-Museum, Bochum, pp 53–62

    Google Scholar 

  93. Bourgarit D, Rostan P, Burger E, Carozza L, Benoît M, Artioli G (2008) The beginning of copper mass production in the Alps: the Saint-Véran mining area reconsidered, historical metallurgy. J Hist Metallurgy Soc 42(1):1–11

    Google Scholar 

  94. Artioli G, Angelini I, Burger D, Bougarit E, Colpani F (2007) Petrographic and chemical investigations of the earliest copper smelting slags in Italy: towards a reconstruction of the beginning of copper metallurgy. In: Archaeometallurgy in Europe. Proceedings of the second international conference, Aquileia 2007. AIM, Milano, pp 12–20

    Google Scholar 

  95. Bourgarit D (2007) Chalcolithic copper smelting. In: La Niece S, Hook D, Craddock P (eds) Metals and mines: studies in archaeometallurgy. Duncan R. Hook, London, pp 3–14

    Google Scholar 

  96. Hauptmann A (2007) The archaeometallurgy of copper: evidence from Faynan, Jordan. Springer, NewYork/Heidelberg/Dordrecht/London

    Book  Google Scholar 

  97. Giardino C (2010) I metalli nel mondo antico. Introduzione all’archeometallurgia. Nuova edizione aggiornata e ampliata. Laterza, Roma-Bari

    Google Scholar 

  98. Montero Ruiz I (2010) Manual de arqueometalurgia. Ilustre Colegio de Doctores y Licenciados en Filosofía y Letras y en Ciencias de la Comunidad de Madrid, Madrid

    Google Scholar 

  99. Roberts BW, Thornton CP (eds) (2014) Archaeometallurgy in global perspective. Methods and syntheses. Springer, New York/Heidelberg/Dordrecht/London

    Google Scholar 

  100. Roberts BW, Thornton CP (2014) Introduction. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Methods and syntheses. Springer, New York/Heidelberg/Dordrecht/London, pp 1–9

    Chapter  Google Scholar 

  101. Rovira Lloréns S (1996) Métodos analíticos aplicados a la investigación arqueometalúrgica. In: Calvo Peréz B, Bernárdez Pérez MJ, Guisado di Monti JC (eds) Arqueología e historia de la mineríay metalurgia. Escuela Técnica Superior de Ingenieros de Minas, Madrid, pp 27–41

    Google Scholar 

  102. Cesareo R, Von Hase FW (1976) Analisi di Ori Etruschi del VII sec. a.C. con uno strumento portatile che impiega la tecnica della fluorescenza X eccitata da radioisotopi. In: Atti dei Convegni Lincei, XI Congresso Internazionale, Applicazione dei metodi nucleari nel campo delle opere d’arte, Rome-Venise 1973. Accademia dei Lincei, Roma, pp 259–296

    Google Scholar 

  103. Rovira S (1995) Estudio arqueometalurgìco del depósito de la Ría de Huelva. In: Ruiz-Gálvez Priego M (ed) Ritos de paso y puntos de paso. La Ría de Huelva en el mundo del Bronce Final Europeo. Servicio de Publicaciones, Universidad Complutense, Madrid, pp 33–57

    Google Scholar 

  104. Giardino C, Paternoster G (2019) Chemical-physical analyses by Energy Dispersive X-Ray Fluorescence (EDXRF). In: Giardino C (ed) Magan – the land of copper, prehistoric metallurgy of Oman. Archaeopress Publishing Ltd, Oxford, pp 139–163

    Chapter  Google Scholar 

  105. Giardino C (2011) Matrici per vasellame metallico e altri residui di fusione di età ellenistica da Castro (Lecce). In: Giardino C (ed) Archeometallurgia: dalla conoscenza alla fruizione. Atti del Workshop (Cavallino-LE 2006), Beni Archeologici – Conoscenza e Tecnologie Quaderno 8. Edipuglia, Bari, pp 151–160

    Google Scholar 

  106. Giardino C, D’Annibale C (2017) Pizzica Pantanello (Metaponto): la più antica testimonianza di attività metallurgiche dall’Italia meridionale. AION - Annali di Archeologia e Storia Antica 21–22:47–63

    Google Scholar 

  107. France-Lanord A (1980) Ancient metals: structure and characteristics. Metaux Anciens: Structure et characteristiques. ICCROM, Roma

    Google Scholar 

  108. Rossi M, Casali F, Chirco P, Didonato T, Morigi MP, Nava E, Zanarini M, Morigi Govi C, Dore A (1999) 3D computed tomography: a tool for analysis and conservation of archaeological artifacts. In: Marabelli M, Parisi C (eds) 6th international conference on “Non-destructive testing and microanalysis for the diagnostics and conservation of the cultural and environmental heritage” (Rome 1999). I.C.R., AIPnD, Rome, pp 1595–1604

    Google Scholar 

  109. Matteini M, Moles A (1984) Scienza e restauro. Metodi di indagine. Nardini Editore, Firenze

    Google Scholar 

  110. Marabelli M (1994) The monument of Marcus Aurelius: research and conservation. In: Scott DA, Podany J, Considine BB (eds) Ancient & historic metals: conservation and scientific research. Getty Conservation Institute, Los Angeles, pp 1–19

    Google Scholar 

  111. Cagnetti V, Diana M, Ferretti M, Moioli P (1992) La Chimera di Arezzo: studio di alcuni aspetti metallurgico-strutturali mediante fluorescenza X e termografia as alta risoluzione. In: Marabelli M, Santopadre P (eds) 3a Conferenza Internazionale sulle Prove non Distruttive, Metodi microanalitici e indagini ambientali per lo studio e la conservazione delle opere d’arte – 3rd international conference on non-destructive testing, microanalytical methods and environment evaluation for study and conservation of works of art (Viterbo 1992). BetaGamma Editrice, Viterbo, pp 217–228

    Google Scholar 

  112. Scott DA (1991) Metallography and microstructure in ancient and historic metals. Getty Trust Publications (Getty Conservation Institute), Los Angeles

    Google Scholar 

  113. Sperl G (1980) Über die Typologie urzeitlicher, frühgeschichtlicher und mittelalterlicher Eisenhüttenschlacken. Studien zur Industrie-Archäologie VII. Österreichischen Akademie der Wissenshaften, Wien

    Google Scholar 

  114. Bachmann H-G (1982) The identification of slags from archaeological sites. Occasional paper 6. Institute of Archaeology, University of London, London

    Google Scholar 

  115. Gale NH, Stos-Gale ZA (1982) Bronze Age copper sources in the Mediterranean: a new approach. Science 216:11–19

    Article  Google Scholar 

  116. Stos-Gale ZA, Gale NH (1982) The sources of Mycenaean silver and lead. J Field Archaeol 9:467–495

    Google Scholar 

  117. Gale NH, Stos-Gale ZA (1987) Oxhide Ingots from Sardinia, Crete and Cyprus and the Bronze age copper trade: new scientific evidence. In: Balmuth MS (ed) Studies in Sardinian Archaeology III. Nuragic Sardinia and the Mycenean world, BAR international series 387. BAR Publishing, Oxford, pp 135–178

    Google Scholar 

  118. Stos-Gale ZA, Macdonald CF (1991) Sources of metals and trade in the Bronze Age Aegean. In: Gale NH (ed) Bronze age trade in the Mediterranean. Studies in Mediterranean archaeology XC. Astrom, Jonsered, pp 249–288

    Google Scholar 

  119. Pernicka E (1992) Comments... III. Archaeometry 34(2):322–326

    Article  Google Scholar 

  120. Stos-Gale ZA (1993) Isotopic analyses of ores, slags and artefacts: the contribution to archaeometallurgy. In: Francovich R (ed) Archeologia delle Attività Estrattive e Metallurgiche. All’Insegna del Giglio, Firenze, pp 593–627

    Google Scholar 

  121. Pernicka E (1995) Crisis or Catharsis in lead isotope analysis? J Mediterr Archaeol 8(1):59–64

    Article  Google Scholar 

  122. Stos-Gale ZA, Gale NH, Houghton J, Speakman R (1995) Lead isotope data from the Isotrace laboratory, Oxford: Archaeometry data base 1, Ores from the Western Mediterranean. Archaeometry 37(2):407–415

    Article  Google Scholar 

  123. Stos-Gale ZA (2000) Trade in metals in the Bronze Age Mediterranean: an overview of Lead Isotope data for provenance studies. In: Pare CFE (ed) Metals make the world go round. The supply and circulation of metals in Bronze Age Europe. Proceedings of a conference held at the University of Birmingham in June 1997. Oxbow Books, Oxford, pp 56–69

    Google Scholar 

  124. Dussubieux L, Golitko M, Gratuze B (eds) (2016) Recent advances in laser ablation ICPMS for archaeology. Springer, Heidelberg/Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Giardino, C. (2022). Archaeometallurgy: A Discipline Between Past and Future. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_24

Download citation

Publish with us

Policies and ethics