Skip to main content

Terahertz Waves in Archaeology

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis
  • 2968 Accesses

Abstract

One of the most important features of Terahertz waves is that they can penetrate a wide variety of dielectric materials. This, combined with a moderately good spatial resolution required for imaging applications of hidden structures, introduces a new way of “seeing.” New advances in technology have made the Terahertz frequency band accessible for a wide range of imaging and spectroscopic applications ranging from medicine to industry. Starting from the description of the main schemes that are currently used in generation and detection of Terahertz waves, we focus on the use of Terahertz waves in the archaeological domain. The few published works on this topic demonstrate that Terahertz is still an unexplored technology when used for archaeological purposes. Despite this, we believe that archaeology can benefit from Terahertz technology. The wide range of problems as well as materials, one can encounter, can be the stimulus for further exploration. This may offer new answers to questions concerning materials characterization that have been left unsolved by complementary techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EOS:

Electro-optical sampling

THz:

Terahertz

GaAs:

Gallium arsenide

QCL:

Quantum Cascade laser

CW:

Continuous Wave

OCT:

Optical Coherence Tomography

TOF:

Time of Flight

LIPS:

Laser-induced Plasma Spectroscopy

BP:

Boson Peak

RF:

Radio Frequency

References

  1. Sun Q, He Y, Liu K, Fan S, Parrott EPJ, Pickwell-MacPherson E (2017) Recent advances in terahertz technology for biomedical applications. Quant Imaging Med Surg 7(3):345–355

    Article  Google Scholar 

  2. Nuss MC, Orenstein J (1997) Terahertz time domain spectroscopy (THz-TDS). In: Gruener G (ed) Millimeter-wave spectroscopy of solids. Springer, Berlin

    Google Scholar 

  3. Mittleman DM (ed) (2003) Sensing with Terahertz radiation. Springer, Berlin

    Google Scholar 

  4. Ferguson B, Zhang X-C (2002) Materials for terahertz science and technology. Nat Mater 1:26–33

    Article  Google Scholar 

  5. Dhillon SS, Vitiello MS, Linfield EH, Davies AG, Hoffmann MC, Booske J, Paoloni C, Gensch M, Weightman P, Williams GP, Castro-Camus E, Cumming DRS, Simoens F, Escorcia-Carranza I, Grant J, Lucyszyn S, Kuwata-Gonokami M, Konishi K, Koch M, Schmuttenmaer CA, Cocker TL, Huber R, Markelz AG, Taylor ZD, Wallace VP, Zeitler JA, Sibik J, Korter TM, Ellison B, Rea S, Goldsmith P, Cooper KB, Appleby R, Pardo D, Huggard PG, Krozer V, Shams H, Fice M, Renaud C, Seeds A, Stöhr A, Naftaly M, Ridler N, Clarke R, Cunningham JE, Johnston MB (2017) The 2017 terahertz science and technology roadmap. J Phys D Appl Phys 50(4):043001

    Article  Google Scholar 

  6. Öhrström L, Bitzer A, Walther M, Rühli FJ (2010) Technical note: terahertz imaging of ancient mummies and bone. Am J Phys Anthropol 142(3):497–500

    Article  Google Scholar 

  7. Jackson JB, Labaune J, Mourou G, Duling IN, Walker G, Bowen J, Menu M (2011) Terahertz pulse imaging of stratified architectural materials for cultural heritage studies. In: Proc. SPIE 2011. SPIE Optical Metrology, Munich, p 808409

    Google Scholar 

  8. Jackson JB, Labaune J, Mourou GA, D’Alessandro L, Whyte A, Menu M (2011) Pulsed terahertz investigation of corroded and mineralized copper alloy historical artifacts. In: Proceedings 2011 international conference on Infrared, Millimeter, and Terahertz waves. Irmmw-THz, Huston, pp 1–2

    Google Scholar 

  9. Jackson JB, Bowen J, Walker G, Labaune J, Mourou G, Menu M, Fukunaga K (2011) A survey of terahertz applications in cultural heritage conservation science. IEEE Trans Terahertz Sci Technol 1(1):220–231

    Article  Google Scholar 

  10. Caumes J-P, Younus A, Salort S, Chassagne B, Recur B, Ziéglé A, Dautant A, Abraham E (2011) Terahertz tomographic imaging of XVIIIth Dynasty Egyptian sealed pottery. Appl Opt 50(20):3604–3608

    Article  Google Scholar 

  11. Fukunaga K, Cortes E, Cosentino A, Stünkel I, Leona M, Duling IN, Mininberg DT (2011) Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy. J Eur Opt Soc-Rapid 6:11040

    Article  Google Scholar 

  12. J. Labaune, J.B. Jackson, K. Fukunaga,·J. White, L. d’Alessandro, A. Whyte,·M. Menu, G. Mourou: Investigation of Terra Cotta artefacts with terahertz, Appl Phys A Mater Sci Process 105, 5–9 (2011)

    Article  Google Scholar 

  13. Younus A, Caumes J-P, Salort S, Chassagne B, Pradère C, Dautant A, Ziéglé A, Abraham E (2011) A continuous millimeter-wave imaging scanner for art conservation science. Adv At Mol Opt Phys 2011:275682

    Google Scholar 

  14. Bessou M, Duday H, Caumes J-P, Salort S, Chassagne B et al (2012) Advantage of terahertz radiation versus X-ray to detect hidden organic materials in sealed vessels. Opt Commun 285(21–22):4175–4179

    Article  Google Scholar 

  15. Walker GC, Bowen JW, Matthews W, Roychowdhury S, Labaune J, Mourou G, Menu M, Hodder I, Jackson JB (2013) Sub-surface terahertz imaging through uneven surfaces: visualizing Neolithic wall paintings in Çatalhöyük. Opt Express 21(7):8126–8134

    Article  Google Scholar 

  16. Abraham E, Bessou M, Ziéglé A, Hervé M-C, Szentmiklósi L, Kasztovszky ZS, Kis Z, Menu M (2014) Terahertz, X-ray and neutron computed tomography of an eighteenth Dynasty Egyptian sealed pottery. Appl Phys A Mater Sci Process 117(3):963–972

    Article  Google Scholar 

  17. Sasaki T, Hashimoto Y, Mori T, Kojima S (2015) Broadband terahertz time-domain spectroscopy of archaeological Baltic Amber. Int Lett Chem Phys Astronomy 62:29–33

    Article  Google Scholar 

  18. Öhrström L, Fischer BM, Bitzer A, Wallauer J, Walther M, Rühli F (2015) Terahertz imaging modalities of ancient Egyptian mummified objects and of a naturally mummified rat. Anat Rec (Hoboken) 298(6):1135–1143

    Article  Google Scholar 

  19. Jackson JB, Labaune J, Bailleul-Lesuer R, D'Alessandro L, Whyte A, Bowen JW, Menu M, Mourou G (2015) Terahertz pulse imaging in archaeology. Front Optoelectron 8(1):81–92

    Article  Google Scholar 

  20. Cacciari I, Agresti J, Siano S (2016) Combined THz and LIPS analysis of corroded archaeological bronzes. Microchem J 126:76–82

    Article  Google Scholar 

  21. Jackson B, Mourou G, Labaune J, Menu M (2015) Terahertz pulse imaging of an Egyptian Bird mummy. In: Bailleul-LeSuer R (ed) Between heaven and earth, Birds in Ancient Egypt. Oriental Institute Museum Publications, Chicago, pp 119–122

    Google Scholar 

  22. Jackson JB (2016) TISCH – Terahertz imaging and spectroscopy in cultural heritage: applications in archeology, architecture and art conservation science. Proceeding optical sensors. Optical Society of America, Vancouver, pp SeTu3E.3(1)–(3))

    Google Scholar 

  23. Fukunaga K, Kohdzuma Y (2016) THz pulsed time domain imaging applied to museum objects and its comparison with other frequency regions. Proceeding 19th world conference on non-destructive testing. Curran Associates, Inc., New York, pp 676–683

    Google Scholar 

  24. Cacciari I, Siano S (2017) Use of THz reflectometry for roughness estimations of archaeological metal surfaces. J Infrared Milli Terahz Waves 38:503–517

    Article  Google Scholar 

  25. Faustino MAB, Lopez Jr LP, Cabello NI, De Los Reyes A, Cafe A, Tugado C, Hernandez V, Barretto-Tesoro G, Estacio ES (2017) Terahertz transmission of soil samples excavated from Pinagbayanan, San Juan, Batangas. Proceedings of the Samahang Pisika ng, Pilipinas. Cebu City, Philippine, pp SPP-2017-2D-03-1(4))

    Google Scholar 

  26. Amir F, Mitchel CJ, Farrington N, Missous M (2009) Advanced Gunn diode as high power terahertz source for a millimetre wave high power multiplier. In: Proc SPIE 2009. SPIE Security + Defence, Berlin, p 74850I(1)–(11)

    Google Scholar 

  27. Pérez S, González T, Pardo D, Mateos J (2008) Terahertz Gunn-like oscillations in InGaAs/InAlAs planar diodes. J Appl Phys 103:0945160

    Article  Google Scholar 

  28. Mukherjee M, Mazumder N, Roy SK, Goswami K (2007) GaN IMPATT diode: a photo-sensitive high power terahertz source. Semicond Sci Technol 22(12):1258–1267

    Article  Google Scholar 

  29. Acharyya A, Banerjee JP (2014) Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl Nanosci 4(1):1–14

    Article  Google Scholar 

  30. E. Wasige, K.H. Alharbi, A. Al-Khalidi, J. Wang, A. Khalid, G.C. Rodrigues, J. Figueiredo: Resonant tunnelling diode terahertz sources for broadband wireless communications, Proceedings Volume 10103, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X, (SPIE OPTO, San Francisco 2017) pp. 101031J(1)–(11)

    Google Scholar 

  31. Asada M, Suzuki S, Kishimoto N (2008) Resonant tunneling diodes for sub-terahertz and terahertz oscillators. Jpn J Appl Phys 47(6):4375–4384

    Article  Google Scholar 

  32. Orihashi N, Suzuki S (2005) One THz harmonic oscillation of resonant tunneling diodes. Appl Phys Lett 87:233501

    Article  Google Scholar 

  33. Udal A, Jaanus M, Valušis G, Kašalynas I, Ikonic Z, Indjin D (2015) Progress in development of the resonant tunneling diodes as promising compact sources at the THz gap bottom. In: Pereira MF, Shulika O (eds) THz for CBRN and explosives detection and diagnosis. NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 169–178

    Google Scholar 

  34. Byrd JM, Leemans WP, Loftsdottir A, Marcelis B, Martin MC, McKinney WR, Sannibale F, Scarvie T, Steier C (2002) Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring. Phys Rev Lett 89:224801

    Article  Google Scholar 

  35. Mineo M, Paoloni C (2010) Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications. IEEE Trans Electron Devices 57(6):1481–1484

    Article  Google Scholar 

  36. Xu X, Wei Y, Shen F, Yin H, Xu J, Gong Y, Wang W (2012) A watt-class 1-THz backward-wave oscillator based on sine waveguide. Phys Plasmas 19:013113(1)–(5)

    Google Scholar 

  37. He W, Donaldson CR, Zhang L, Ronald K, McElhinney P, Cross AW (2013) High power wideband gyrotron backward wave oscillator operating towards the terahertz region. Phys Rev Lett 110(16):165101(1)–(5)

    Google Scholar 

  38. Gallerano GP, Biedron S. Overview of terahertz radiation sources. Proceedings of the 26th international free electron laser conference and 11th FEL Users workshop, pp 216–221

    Google Scholar 

  39. Köhler R, Tredicucci A, Beltram F, Beere HE, Linfield EH, Davies AG, Ritchie DA, Iotti RC, Rossi F (2002) Terahertz semiconductor-heterostructure laser. Nature 417:156–159

    Article  Google Scholar 

  40. Hübers H-W, Pavlov SG, Shastin VN (2005) Terahertz lasers based on germanium and silicon Semicond. Sci Technol 20:S211–S221

    Google Scholar 

  41. Odnoblyudov MA, Prokofie AA, Yassievich IN, Chao KA (2004) Theory of a strained p-Ge resonant-state terahertz laser. Phys Rev B 70:115209(1)–(14)

    Google Scholar 

  42. Chassagneux Y, Colombelli R, Maineult W, Barbieri S, Beere HE, Ritchie DA, Khanna SP, Linfield EH, Davies AG (2009) Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions. Nature 457:174–178

    Article  Google Scholar 

  43. Brenner C, Hoffmann S, Friedrich C-S, Schlauch T, Klehr A, Erbert G, Tränkle G, Jördens C, Salhi M, Koch M, Hofmann MR (2009) Semiconductor laser based THz generation and detection. Phys Status Solidi C 6(2):564–567

    Article  Google Scholar 

  44. Vijayraghavan K, Jiang Y, Jung S, Belkin M (2004) Sensing & measurement, compact and broadly tunable semiconductor terahertz radiation sources. SPIE newsroom, pp 1–3

    Google Scholar 

  45. Brenner C, Hoffmann S, Hofmann M, Salhi M, Koch M (2006) Room-temperature terahertz detection with diode lasers. In: Conference on lasers and electro-optics. IEEE, Piscataway, p CTuL6(1)–(2)

    Google Scholar 

  46. Lu QY, Slivken S, Bandyopadhyay N, Bai Y, Razeghi M (2014) Widely tunable room temperature semiconductor terahertz source. Appl Phys Lett 105(20):201102(1)–(5)

    Article  Google Scholar 

  47. Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Quantum Cascade Laser Sci 264(5158):553–556

    Google Scholar 

  48. Williams BS, Kumar S, Hu Q, Reno JL (2005) Operation of terahertz quantum-cascade lasers at 164K in pulsed mode and at 117K in continuous-wave mode. Opt Express 13(9):3331–3339

    Article  Google Scholar 

  49. Williams BS (2007) Terahertz quantum-cascade lasers. Nature Photon 1:517–525

    Article  Google Scholar 

  50. S. Kumar, Q. Hu, and J.L. Reno: 186K operation of terahertz quantum-cascade lasers based on a diagonal design, Appl Phys Lett. 94 131105(1)–(3) (2009)

    Google Scholar 

  51. Scalari G, Walther C, Fischer M, Terazzi R, Beere H, Ritchie D, Faist J (2009) THz and sub-THz quantum cascade lasers. Laser Photonics Rev 3(1–2):45–66

    Article  Google Scholar 

  52. Mechold L, Kunsh J (2004) QCL modules are ready for industrial application. Laser Focus World 40(5):88–92

    Google Scholar 

  53. AzoOptics. https://www.azooptics.com/Article.aspx?ArticleID=1403

  54. Maldonado D. https://www.photonics.com/Articles/QCL_Primer_History_Characteristics_Applications/a58343

  55. Schwaighofer A, Brandstetter M, Lendl B (2017) Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev 46:5903–5924

    Article  Google Scholar 

  56. Sreedhar H, Varma VK, Bird B, Guzman G, Walsh MJ (2017) Applications of QCL mid-IR imaging to the advancement of pathology. Proceedings of the Volume 10140, medical imaging 2017: digital pathology. SPIE Medical Imaging, Orlando, pp 1014004(1)–(7)

    Google Scholar 

  57. Dean P, Valavanis A, Keeley J, Bertling K, Lim YL, Alhathlool R, Burnett AD, Li LH, Khanna SP, Indjin D, Taimre T, Rakić AD, Linfield EH, Davies AG (2014) Terahertz imaging using quantum cascade lasers-a review of systems and applications. J Phys D Appl Phys 47:374008(1)–(22)

    Google Scholar 

  58. Darmo J, Tamosiunas V, Fasching G, Kröll J, Unterrainer K, Beck M, Giovannini M, Faist J, Kremser C, Debbage P (2004) Imaging with a terahertz quantum cascade laser. Opt Express 12(9):1879–1884

    Article  Google Scholar 

  59. Nguyen KL, Johns ML, Gladden LF, Worrall CH, Alexander P, Beere HE, Pepper M, Ritchie DA, Alton J, Barbieri S, Linfield EH (2006) Three-dimensional imaging with a terahertz quantum cascade laser. Opt Express 14(6):2123–2129

    Article  Google Scholar 

  60. Fukunaga K (2016) THz technology applied to cultural heritage in practice. Springer, Tokyo

    Book  Google Scholar 

  61. Auston DH, Cheung KP, Valdmanis JA, Kleinman DA (1984) Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys Rev Lett 53(16):1555–1558

    Article  Google Scholar 

  62. Fattinger C, Grischkowsky D (1989) Terahertz beams. Appl Phys Lett 54(6):490–492

    Article  Google Scholar 

  63. Jiang Z, Zhang X-C (1999) Terahertz imaging via electrooptic effect. IEEE Trans Microwave Theory Tech 47(12):2644–2650

    Article  Google Scholar 

  64. Wu Q, Hewitt TD, Zhang X-C (1996) Two-dimensional electro-optic imaging of THz beams. Appl Phys Lett 69(8):1026–1028

    Article  Google Scholar 

  65. Brown ER, McIntosh KA, Nichols KB, Dennis CL (1995) Photomixing up to 3.8 THz in low temperature-grown GaAs. Appl Phys Lett 66(3):285–287

    Article  Google Scholar 

  66. McIntosh KA, Brown ER, Nichols KB, McMahon OB, DiNatale WF, Lyszczarz TM (1995) Terahertz photomixing with diode lasers in low-temperature-grown GaAs. Appl Phys Lett 67(26):3844–3846

    Article  Google Scholar 

  67. Yin X, Ng BW-H, Abbott D (2012) Terahertz sources and detectors. In: Yin X, Ng BW-H, Abbott D (eds) Terahertz imaging for biomedical applications: pattern recognition and tomographic reconstruction. Springer, New York

    Chapter  Google Scholar 

  68. Nellen S, Globisch B, Kohlhaas RB, Liebermeister L, Schell M (2018) Recent progress of continuous-wave terahertz systems for spectroscopy, non-destructive testing, and telecommunication. Proceedings of the SPIE 10531, Terahertz, RF, millimeter, and submillimeter-wave technology and applications XI, C. SPIE, San Francisco, pp 105310(1)–(9)

    Google Scholar 

  69. Hindle F, Cuisset A, Bocquet R, Mouret G (2008) Continuous-wave terahertz by photomixing: applications to gas phase pollutant detection and quantification. C R Physique 9(2):262–275

    Article  Google Scholar 

  70. Park I, Sydlo C, Fischer I, Elsäßer W, Hartnage HL (2008) Generation and spectroscopic application of tunable continuous-wave terahertz radiation using a dual-mode semiconductor laser. Meas Sci Technol 19:065305(1)–(9)

    Google Scholar 

  71. Dong SW, Zhu Z-B, Wang Y (2009) CW terahertz source techniques for space systems. Proceedings Volume 7385, International Symposium on Photoelectronic Detection and Imaging 2009. SPIE, Beijing, pp 73851A(1)–(6)

    Google Scholar 

  72. Brown ER, Segovia-Vargas D (2015) Principles of THz direct detection. In: Carpintero G, Muñoz LEG, Hartnagel HL, Preu S, Räisänen AV (eds) Semiconductor Terahertz technology: devices and systems at room temperature operation. Wiley, Hoboken

    Google Scholar 

  73. Lee AWM, Qin Q, Kumar S, Williams BS, Hu Q, Reno JL (2006) Appl Phys Lett 89(14):141125(1)–(3)

    Google Scholar 

  74. Lee AWM, Williams BS, Kumar S, Hu Q, Reno JL (2006) Real-time imaging using a 4.3-THz quantum cascade laser and a 320 240 microbolometer focal-plane array. IEEE Photonics Technol Lett 18(13):1415–1417

    Article  Google Scholar 

  75. Hammar A, Cherednichenko S, Bevilacqua S, Stake J (2011) Terahertz direct detection in microbolometers. IEEE Trans Terahertz Sci Technol 1(2):390–394

    Article  Google Scholar 

  76. Dobroiu A, Yamashita M, Ohshima YN, Morita Y, Otani C, Kawase K (2004) Terahertz imaging system based on a backward-wave oscillator. Appl Opt 43(60):5637–5646

    Article  Google Scholar 

  77. Lee Y-S (2009) Principles of terahertz science and technology. Springer, New York

    Google Scholar 

  78. Hargreaves S, Lewis RA (2007) Terahertz imaging: materials and methods. J Mater Sci Mater Electron 18:S299–S303

    Article  Google Scholar 

  79. Karpowicz N, Zhong H, Xu J, Lin K-I, Hwang J-S, Zhang X-C (2005) Nondestructive sub-THz imaging, proceedings volume 5727, terahertz and gigahertz electronics and photonics IV. SPIE, San Jose, pp 132–142

    Google Scholar 

  80. Sizova F, Rogalski A (2010) THz detectors. Prog Quant Electron 34(5):278–347

    Article  Google Scholar 

  81. Roser HP, Hubers HW, Crowe TW, Peatman WCB (1994) Nanostructure GaAs Schottky diodes for far-infrared heterodyne receivers. IR Physics 35(2–3):451–462

    Google Scholar 

  82. Siegel PH, Mehdi I (1996) The spare-diode-detector: a new planar diode detector circuit with state-of-the-art performance for millimeter and submillimeter wavelengths. JPL New Technol Rep NPO-20 104

    Google Scholar 

  83. Erickson N (2002) A fast, very sensitive calorimetric power meter for millimeter to submillimeter wavelengths. Proceedings of the 13th international space terahertz technology symp, pp 301–308

    Google Scholar 

  84. Turner AD, Bock JJ, Beeman JW, Glenn J, Hargrave PC, Hristov VV, Nguyen HT, Rahman F, Sethuraman S, Woodcraft AL (2001) Silicon nitride micro−mesh bolometer array for submillimeter astrophysics. Appl Opt 40(28):4921–4932

    Article  Google Scholar 

  85. Voellmer GM, Allen CA, Amato MJ, Babu SR, Bartels AE, Benford DJ, Derro RJ, Dowell CD, Harper DA, Jhabvala MD, Moseley SH, Rennick T, Shirron PJ, Smith WW, Staguhn JG (2003) Design and fabrication of two−dimensional semiconducting bolometer arrays for HAWC and SHARC−II. Proceedings of SPIE 4855, millimeter and submillimeter detectors for astronomy, pp 63–72

    Google Scholar 

  86. Staguhn JG, Benford DJ, Pajot F, Ames TJ, Chervenak JA, Grossman EN, Irwin KD, Maffei B, Moseley SH, Phillips TG, Reintsema CD, Rioux C, Shafer RA, Voellmer GM (2003) Astronomical demonstration of superconducting bolometer arrays. Proceedings SPIE 4855, millimeter and submillimeter detectors for astronomy, pp 100–107

    Google Scholar 

  87. Kim DY, Park S, Han R, Kenneth KO (2016) Design and demonstration of 820-GHz array using diode-connected NMOS transistors in 130-nm CMOS for active imaging. IEEE THz Sci Technol 6(2):306–317

    Article  Google Scholar 

  88. Krishna MG, Kshirsagar SD, Tewari SP (2012) Terahertz emitters, detectors and sensors: current status and future prospects. IntechOpen, London, pp 115–144

    Google Scholar 

  89. Cai Y, Brener I, Lopata J, Wynn J, Pfeiffer L, Stark JB, Wu Q, Zhang XC, Federici JF (1998) Direct comparison between free-space electro-optic sampling and antenna detection. Appl Phys Lett 73(4):444–446

    Article  Google Scholar 

  90. Ibrahim A, Férachou D, Sharma G, Singh K, Kirouac-Turmel M, Ozaki T (2016) Ultra-high dynamic range electro-optic sampling for detecting millimeter and sub-millimeter radiation. Scient Rep 6:23107(1)–(9)

    Google Scholar 

  91. Nahata A, Auston DH, Heinz TF, Wu C (1996) Coherent detection of freely propagating terahertz radiation by electro-optic sampling. Appl Phys Lett 68(2):150–152

    Article  Google Scholar 

  92. Hu BB, Nuss MC (1995) Imaging with terahertz waves. Opt Lett 20(16):1716–1718

    Article  Google Scholar 

  93. Jin Y-S, Jeon S-G, Kim G-J, Kim J-I, Shon C-H (2007) Fast scanning of a pulsed terahertz signal using an oscillating optical delay line. Rev Sci Instrum 78(2):023101(1)–(5)

    Google Scholar 

  94. Kim GY, Jeon S-G, Kim J-I, Jin Y-S (2008) High speed scanning of terahertz pulse by a rotary optical delay. Rev Scient Instr 79(10):106102(1)–(3)

    Google Scholar 

  95. Ahi K, Anwar M (2016) Developing terahertz imaging equation and enhancement of the resolution of terahertz images using deconvolution. Proceedings SPIE, Terahertz physics, devices, and systems X: advanced applications in industry and defense, pp 98560N(1)–(18)

    Google Scholar 

  96. Cacciari I, Mugnai D, Ranfagni A (2019) Resolving power beyond the diffraction limit demonstrated with composed pupils at microwave and THz frequencies. J Appl Phys 125:044901(1)–(7)

    Google Scholar 

  97. Lo YH, Leonhardt R (2008) Aspheric lenses for terahertz imaging. Opt Express 16:15991–15998

    Article  Google Scholar 

  98. Bandyopadhyay A, Stepanov A, Schulkin B, Federici MD, Sengupta A, Gary D, Federici JF, Barat R, Michalopoulou ZH, Zimdars D (2006) Terahertz interferometric and synthetic aperture imaging. JOSA A 23(5):1168–1178

    Article  Google Scholar 

  99. Li X, Hong Z, He J, Chen Y (2010) Precisely optical material parameter determination by time domain waveform rebuilding with THz time-domain spectroscopy. Opt Commun 283(23):4701–4706

    Article  Google Scholar 

  100. Hua YF, Zhang HJ (2010) Qualitative and quantitative detection of pesticides with terahertz time-domain spectroscopy. IEEE Trans Microw Theory Tech 58(7):2064–2070

    Article  Google Scholar 

  101. Gowen AA, O’Sullivan C, O’Donnell CP (2012) Terahertz time domain spectroscopy and imaging: emerging techniques for food process monitoring and quality control. Trends Food Sci Technol 25(1):40–46

    Article  Google Scholar 

  102. Duvillaret L, Garet F, Coutaz JL (1996) A reliable method for extraction of material parameters in terahertz time-domain spectroscopy. IEEE J Sel Topics Quantum Electron 2(3):739–746

    Article  Google Scholar 

  103. Duvillaret L, Garet F, Coutaz JL (1999) Highly precise determination of optical constants and samples thickness in terahertz time-domain spectroscopy. Appl Opt 38(2):409–415

    Article  Google Scholar 

  104. Timothy DD, Richard GB, Daniel MM (2001) Material parameter estimation with terahertz time-domain spectroscopy. J Opt Soc Amer A Opt Image Sci 18(7):1562–1571

    Article  Google Scholar 

  105. Mittleman DM, Jacobsen RH, Nuss MC (1996) T-ray imaging. IEEE J Sel Top Quantrum Electron 2(3):679–692

    Article  Google Scholar 

  106. Brucherseifer M, Haring Bolivar P, Klingenberg H, Kurz H (2001) Angle dependent THz tomography characterization of thin ceramic oxide films for fuel cell applications. Appl Phys B Lasers Opt 72(2):361–366

    Article  Google Scholar 

  107. Dobroiu A, Otani C, Kawase K (2006) Terahertz-wave sources and imaging applications. Meas Sci Technol 17(11):R161–R174

    Article  Google Scholar 

  108. Yu C, Fan S, Sun Y, Pickwell-Macpherson E (2012) The potential of terahertz imaging for cancer diagnosis: a review of investigations to date, quant. Imaging Med Surg 2(1):33–44

    Google Scholar 

  109. Garbacz P (2016) Terahertz imaging – principles, techniques, benefits, and limitations. Problemy Eksploatacji 1:81–92

    Google Scholar 

  110. Ghann W, Uddin J. Terahertz (THz) spectroscopy: a cutting-edge technology. https://doi.org/10.5772/67031

  111. Yamagiwa M, Ogawa T, Minamikawa T, Ghareab Abdelsalam D, Okabe K, Tsurumachi N, Mizutani Y, Iwata T, Yamamoto H, Yasui T (2018) Real-time amplitude and phase imaging of optically opaque objects by combining full-field off-axis terahertz digital holography with angular spectrum reconstruction. J Infrared Millim Terahertz Waves 39(6):561–572

    Article  Google Scholar 

  112. Semenova VA, Kulya MS, Petrov NV, Grachev YV, Tsypkin AN, Putilin SE, Bespalov VG. Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate. 2016 41st International conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), pp 1–2

    Google Scholar 

  113. Hack E, Zolliker P (2014) Terahertz holography for imaging amplitude and phase objects. Opt Express 22(13):16079–16086

    Article  Google Scholar 

  114. Petrov NV, Kulya MS, Tsypkin AN, Bespalov VG, Gorodetsky A (2016) Application of terahertz pulse time-domain holography for phase imaging. IEEE T THZ Sci Technol 6(3):464–472

    Article  Google Scholar 

  115. Bowman T, El-Shenawee M, Campbell LK (2016) Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas. Biomed Opt Express 7(9):3756–3783

    Article  Google Scholar 

  116. Fan S, Parrott EPJ, Ung BSY, Pickwell-MacPherson E (2016) Calibration method to improve the accuracy of THz imaging and spectroscopy in reflection geometry. Photonic Res 4(3):A29–A35

    Article  Google Scholar 

  117. Huang S, Ashworth PC, Chi W, Kan KWC, Chen Y, Wallace VP, Zhang Y-t, Pickwell-MacPherson E (2009) Improved sample characterization in terahertz reflection imaging and spectroscopy. Opt Express 17(5):3848–3854

    Article  Google Scholar 

  118. Vandrevala F, Karmakar A, Jornet JM, Einarsson E (2016) Extracting complex optical properties of ultra-thin conductors using time-DOMAIN THz spectroscopy. 2016 41st International conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), pp 1–2

    Google Scholar 

  119. Bernier M, Garet F, Couta J-L (2016) Determining the complex refractive index of materials, in the far-infrared from terahertz time-domain data. InTech, London, pp 119–141

    Google Scholar 

  120. Vartiainen EM (2004) Numerical phase correction method for terahertz time-domain reflection spectroscopy. J Appl Phys 96(8):4171–4175

    Article  Google Scholar 

  121. Naftaly M (2015) Evaluation of uncertainty in time-domain spectroscopy. In: Naftaly M (ed) Terahertz metrology. Artech House, Boston, pp 103–105

    Google Scholar 

  122. Pashkin A, Kempa M, Němec H, Kadlec F, Kužel P (2003) Phase-sensitive time domain terahertz reflection spectroscopy. Rev Sci Instrum 74(11):4711–4747

    Article  Google Scholar 

  123. Jepsen PU, Møller U, Merbold H (2007) Investigation of aqueous alcohol and sugar solutions with reflection terahertz time domain spectroscopy. Opt Express 15(22):14717–14737

    Article  Google Scholar 

  124. Redo-Sanchez A, Zhang XC (2011) Self-referenced method for terahertz wave time-domain spectroscopy. Opt Lett 36(17):3308–3310

    Article  Google Scholar 

  125. Kawase K, Shibuya T, Suizu K, Hayashi S (2010) Terahertz-wave generation for industrial applications. Sensing & Measurement. http://spie.org/newsroom/2611-terahertz-wave-generation-for-industrial-applications?SSO=1

  126. Kawase K, Shibuya T, Hayashi S, Suizu K (2010) THz imaging techniques for nondestructive inspections. C R Physique 11(7–8):510–518

    Article  Google Scholar 

  127. Ellrich F, Klier J, Weber S, Jonuscheit J, von Freymann G (2016) Terahertz time-domain technology for thickness determination of industrial relevant multi-layer coatings. 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), pp 1–2

    Google Scholar 

  128. Zeitler JA, Shen YC, Baker C, Taday PF, Pepper M, Rades T (2007) Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging. J Pharm Sci 96(2):330–340

    Article  Google Scholar 

  129. Schecklman S, Zurk LM (2018) Terahertz imaging of thin film layers with matched field processing. Sensors 18:1–20

    Google Scholar 

  130. Hauck J, Stich D, Heidemeyer P, Bastian M, Hochrein T (2014) Terahertz inline wall thickness monitoring system for plastic pipe extrusion. AIP Conference Proc 1593:86–89

    Article  Google Scholar 

  131. Skryl AS, Jackson JB, Bakunov MI, Menu M, Mourou GA (2014) Terahertz time-domain imaging of hidden defects in wooden artworks: application to a Russian icon painting. Appl Opt 53(6):1033–1038

    Article  Google Scholar 

  132. Krügener K, Busch SF, Soltani A, Castro-Camus E, Koch M, Viöl W (2017) Non-destructive analysis of material detachments from polychromatically glazed terracotta artwork by THz time-of-flight spectroscopy. J Infrared Millim Terahertz Waves 38(4):495–502

    Article  Google Scholar 

  133. Arnone DD, Ciesla CM, Corchia A, Egusa S, Pepper M, Chamberlain JM, Bezant C, Linfield EH, Clothier R, Khammo N (1999) Applications of terahertz (THz) technology to medical imaging. Proceedings Volume 3828, Terahertz spectroscopy and applications II. SPIE, Munich, pp 209–219

    Google Scholar 

  134. Guillet JP, Recur B, Frederique L, Bousquet B, Canioni L, Manek-Hönninger I, Desbarats P, Mounaix P (2014) Review of Terahertz Tomography techniques. J Infrared Milli Terahz Waves 35(4):382–411

    Article  Google Scholar 

  135. Chan WL, Deibel J, Mittleman DM (2007) Imaging with terahertz radiation. Rep Prog Phys 70:1325–1379

    Article  Google Scholar 

  136. Keith R (2018). https://www.quora.com/What-is-the-definition-of-artifacts-ecofact-chronofacts-and-structures-in-archaeology

  137. Peregrine PN (2017) The archaeological record. In: Peregrine PN (ed) Archaeological research: a brief introduction. New York, Routledge, p 15

    Google Scholar 

  138. Labaune J, Jackson JB, Pagès-Camagna S, Duling IN, Menu M, Mourou GA (2010) Papyrus imaging with terahertz time domain spectroscopy. Appl Phys A Mater Sci Process 100(3):607–612

    Article  Google Scholar 

  139. Uda M, Menortier G, Nakai I (eds) (2005) X-rays for archaeology. Springer, Berlin

    Google Scholar 

  140. Andreani C, Aliotta F, Arcidiacono L, Borla M, Di Martino D, Facchetti F, Ferraris E, Festa G, Gorini G, Kockelmann W, Kelleher J, Malfitana D, Micieli D, Minniti T, Perelli Cippo E, Ponterio R, Salvato G, Senesi R, Turina V, Vasi C, Greco C (2017) A neutron study of sealed pottery from the grave goods of Kha and MeritJ. Anal At Spectrom 32(7):1342–1347

    Article  Google Scholar 

  141. McKenzie-Clark J, Magnussen J (2016) Real and virtual: the role of computed tomography and 3D imaging in museum practice. In: A cultural cacophony: museum perspectives and projects. NSW branch of Museums Galleries Australia, Sydney, pp 208–221

    Google Scholar 

  142. Beckman P, Spizzichino A (1987) The scattering of electromagnetic waves from rough surfaces. Artech House, London

    Google Scholar 

  143. Cacciari I, Ciofini D, Mascalchi M, Mencaglia A, Siano S (2012) Novel approach to the microscopic inspectrion during laser cleaning treatments of artworks. Anal Bional Chem 402(4):1585–1591

    Article  Google Scholar 

  144. MantlerM M (2001) Schreiner: X-ray analysis of objects of art and archaeology. J Radioanal Nucl Chem 247(3):635–644

    Article  Google Scholar 

  145. Schreiner M, Frühmann B, Jembrih-Simbürger D, Linke R (2004) X-rays in art and archaeology: an overview. Powder Diffract 19(1):3–11

    Article  Google Scholar 

  146. Renfrew C, Shennan S (eds) (1982) Ranking, resource and exchange: aspect of the archaeology of Early European Society. Cambridge University Press, Cambridge

    Google Scholar 

  147. Anderson KB, Crelling JC (eds) (1995) Amber, resinite and fossil resins. American Chemical Society, Washington, DC

    Google Scholar 

  148. Shibata T, Mori T, Kjina S (2015) Low-frequency vibrational properties of crystalline and glassy indomethacin probed by terahertz time-domain spectroscopy and low-frequency Raman scattering, Spectrochim. Acta A 150:207–2011

    Article  Google Scholar 

  149. Friesen TM, Maso OK (eds) (2016) The Oxford handbook of the prehistoric Arctic. Oxford University Press, New York

    Google Scholar 

  150. Henderson J (ed) (2000) The science and archaeology of materials: an investigation of inorganic materials. Routledge, New York

    Google Scholar 

  151. De Boer HH, Van Der Merwe AE (2016) Diagnostic dry bone histology in human paleopathology. Clin Anat 29(7):831–843

    Article  Google Scholar 

  152. Fernández PL (2012) Palaeopathology: the study of disease in the past. Pathobiology 79(5):221–227

    Article  Google Scholar 

  153. Metcalfe NH (2007) In what ways can human skeletal remains be used to understand health and disease from the past? Postgrad Med J 83(978):281–284

    Article  Google Scholar 

  154. Hochrein T (2015) Markets, availability, notice, and technical performance of terahertz systems: historic development, present, and trends. J Infrared Milli Terahz Waves 36(3):235–254

    Article  Google Scholar 

  155. Hillger P, Grzyb J, Jain R, Pfeiffer UR (2019) Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans Terahertz Sci Technol 9(1):1–19

    Article  Google Scholar 

  156. Yu L, Hao L, Meiqiong T, Jiaoqi H, Wei L, Jinying D, Xueping C, Weiling F, Yang Z (2019) The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv 9(17):9354–9363

    Article  Google Scholar 

  157. Akkaş MA (2019) Terahertz wireless data communication. Wirel Netw 25(1):145–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Cacciari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cacciari, I. (2022). Terahertz Waves in Archaeology. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_21

Download citation

Publish with us

Policies and ethics