Skip to main content

Integration of Neutron-Based Elemental Analysis and Imaging to Characterize Complex Cultural Heritage Objects

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis

Abstract

Prompt-gamma activation analysis (PGAA), a nondestructive, neutron-based bulk elemental analysis method, has been actively used for more than 20 years to characterize homogeneous artifacts, such as stone tools, glassware, pottery, coins, bronze or iron items, gold and silver artifacts, as presented in Chap. 46. However, many heritage objects are composite. Here, instead of a bulk average, the local elemental composition should be determined, and the concentrations shall be attributed to a certain region of those objects. These cases can be better addressed by a combined interpretation of topological, visual, and compositional information.

To extend the scope of the PGAA method towards the detailed characterization of these nonhomogeneous or heterogeneous objects, the sampling volume of the element analysis has been reduced from several cm3 to few hundred mm3 at most, while the concentrations are measured at several spots in a row: This approach was established in 2006 as prompt-gamma activation imaging (PGAI).

Complementary neutron and X-ray imaging, as well as structured-light optical 3D scanning, are known to be well-suited techniques to define the structural and morphological features of objects. Here the synergies between the position-sensitive element analysis and these imaging methods are discussed, as well as their joint applications in heritage science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ANCIENT CHARM:

Analysis by neutron-resonant capture imaging and other emerging neutron techniques: New cultural heritage and archaeological research methods

BNC:

Budapest Neutron Centre, HU

CCD:

Charge-coupled device

CHARISMA:

Cultural Heritage Advanced Research Infrastructures: Synergy for a multidisciplinary approach to conservation/restoration

E-RIHS:

European Research Infrastructure for Heritage Science

FOV:

Field of view

FRM II:

Forschungsneutronenquelle Heinz Maier-Leibnitz, DE

FWHM:

Full-width at half maximum

HPGe:

High-purity germanium detector

IAEA:

International Atomic Energy Agency

ICP-MS:

Inductively coupled plasma mass spectrometry

IMAT:

Cold-neutron imaging facility installed on the ISIS second target station

IPERION CH:

Integrated Platform for the European Research Infrastructure ON Cultural Heritage

ISIS:

Pulsed neutron source operated by the Rutherford Appleton Laboratory, UK

JRR-3:

Japan Research Reactor 3

LEGe:

Low-energy germanium

LYSO:

Lutetium-yttrium-orthosilicate

MCNP:

Monte Carlo N-Particle Transport Code

MTF:

Modulation transfer function

NAA:

Instrumental neutron activation analysis

NDP:

Neutron depth profiling

NI:

Neutron imaging

NIPS-NORMA:

Neutron-induced prompt gamma-ray spectroscopy – Neutron Optics and Radiography for Material Analysis station at the Budapest Neutron Centre

NIST:

National Institute of Standards and Technology, USA

NR:

Neutron radiography

NRCA:

Neutron resonance capture analysis

NT:

Neutron tomography

PIXE:

Particle-induced X-ray emission spectroscopy

PGAA:

Prompt-gamma activation analysis method, and also the prompt-gamma activation analysis facility at the Budapest Neutron Centre

PGAI:

Prompt-gamma activation imaging

RAD:

Static/dynamic thermal-neutron and X-ray imaging station at the Budapest Neutron Centre

SANS:

Small-angle neutron scattering

sCMOS:

Scientific complementary metal-oxide semiconductor

TOF:

Time-of-flight

XRF:

X-ray fluorescence spectrometry

References

  1. Postma H, Perego RC, Schillebeeckx P, Siegler P, Borella A (2007) Neutron resonance capture analysis and applications. J Radioanal Nucl Chem 271:95–99. https://doi.org/10.1007/s10967-007-0112-6

    Article  Google Scholar 

  2. Kaestner AP, Hovind J, Boillat P, Muehlebach C, Carminati C, Zarebanadkouki M, Lehmann EH (2017) Bimodal Imaging at ICON Using Neutrons and X-rays. Phys Procedia 88:314–321. https://doi.org/10.1016/j.phpro.2017.06.043

    Article  Google Scholar 

  3. Fedrigo A, Marstal K, Bender Koch C, Andersen Dahl V, Bjorholm Dahl A, Lyksborg M, Gundlach C, Ott F, Strobl M (2018) Investigation of a Monturaqui Impactite by Means of Bi-Modal X-ray and Neutron Tomography. J Imaging 4:72. https://doi.org/10.3390/jimaging4050072

    Article  Google Scholar 

  4. W. Kockelmann, T. Minniti, D. Pooley, G. Burca, R. Ramadhan, F. Akeroyd, G. Howells, C. Moreton-Smith, D. Keymer, J. Kelleher, S. Kabra, T. Lee, R. Ziesche, A. Reid, G. Vitucci, G. Gorini, D. Micieli, R. Agostino, V. Formoso, F. Aliotta, R. Ponterio, S. Trusso, G. Salvato, C. Vasi, F. Grazzi, K. Watanabe, J. Lee, A. Tremsin, J. McPhate, D. Nixon, N. Draper, W. Halcrow, J. Nightingale. Time-of-Flight Neutron Imaging on IMAT@ISIS: A New User Facility for Materials Science. J Imaging. 4 (2018) 47. https://doi.org/10.3390/jimaging4030047

  5. Minniti T, Watanabe K, Burca G, Pooley DE, Kockelmann W (2018) Characterization of the new neutron imaging and materials science facility IMAT. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip 888:184–195. https://doi.org/10.1016/j.nima.2018.01.037

    Article  Google Scholar 

  6. Bohr N (1936) Neutron capture and nuclear constitution. Nature 137:344–348. https://doi.org/10.1038/137344a0

    Article  Google Scholar 

  7. Révay Z (2009) In-beam prompt gamma-activation analysis. In: Encyclopedia of analytical chemistry. Wiley, Chichester. https://doi.org/10.1002/9780470027318.a9131

    Chapter  Google Scholar 

  8. Lea DE (1934) Combination of proton and neutron. Nature 133:24

    Article  Google Scholar 

  9. Paul RL, Lindstrom RM (2000) Prompt gamma-ray activation analysis: fundamentals and applications. J Radioanal Nucl Chem 243:181–189

    Article  Google Scholar 

  10. Fazekas B, Belgya T, Dabolczi L, Molnar G, Simonits A (1996) HYPERMET-PC: program for automatic analysis of complex gamma-ray spectra. J Trace Microprobe Tech 14:167–172

    Google Scholar 

  11. Révay Z (2009) Determining elemental composition using prompt γ activation analysis. Anal Chem 81:6851–6859. https://doi.org/10.1021/ac9011705

    Article  Google Scholar 

  12. Révay Z, Molnár GL, Belgya T, Kasztovszky Z, Firestone RB (2000) A new gamma-ray spectrum catalog for PGAA. J Radioanal Nucl Chem 244:383–389. https://doi.org/10.1023/A:1006795827833

    Article  Google Scholar 

  13. Belgya T, Kis Z, Szentmiklósi L, Kasztovszky Z, Festa G, Andreanelli L, De Pascale MP, Pietropaolo A, Kudejova P, Schulze R, Materna T (2008) A new PGAI-NT setup at the NIPS facility of the Budapest Research Reactor. J Radioanal Nucl Chem 278:713–718. https://doi.org/10.1007/s10967-008-1510-0

    Article  Google Scholar 

  14. Kudejova P, Meierhofer G, Zeitelhack K, Jolie J, Schulze R, Türler A, Materna T (2008) The new PGAA and PGAI facility at the research reactor FRM II in Garching near Munich. J Radioanal Nucl Chem 278:691–695. https://doi.org/10.1007/s10967-008-1506-9

    Article  Google Scholar 

  15. Kis Z, Szentmiklósi L, Belgya T (2015) NIPS–NORMA station – a combined facility for neutron-based nondestructive element analysis and imaging at the Budapest Neutron Centre. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 779:116–123. https://doi.org/10.1016/j.nima.2015.01.047

    Article  Google Scholar 

  16. Geng J (2011) Structured-light 3D surface imaging: a tutorial. Adv Opt Photonics 3:128. https://doi.org/10.1364/AOP.3.000128

    Article  Google Scholar 

  17. Biró KT, Szabó LM, Szentmiklósi L, Korom C, Salamon I (2014) 3D visualisation and multidisciplinary analytical techniques on cultural heritage objects from the collection of the Hungarian National Museum. Archeometriai Műhely XI:243–250

    Google Scholar 

  18. Thewlis J (1956) Neutron radiography. Br J Appl Phys 7:345–350. https://iopscience.iop.org/article/10.1088/0508-3443/7/10/301/pdf. Accessed May 22, 2019

    Article  Google Scholar 

  19. Kak AC, Slaney M (1999) Principles of computerized tomographic imaging. IEEE Press. http://www.slaney.org/pct/pct-toc.html. Accessed 22 May 2019

    Google Scholar 

  20. Jacot-Guillarmod M, Schmidt-Ott K, Mannes D, Kaestner A, Lehmann E, Gervais C (2019) Multi-modal tomography to assess dechlorination treatments of iron-based archaeological artifacts. Herit Sci 7:29. https://doi.org/10.1186/s40494-019-0266-x

    Article  Google Scholar 

  21. Lux I, Koblinger L (1991) Monte Carlo particle transport methods. CRC Press

    Google Scholar 

  22. Goorley T, James M, Booth T, Brown F, Bull J, Cox LJ, Durkee J, Elson J, Fensin M, Forster RA, Hendricks J, Hughes HG, Johns R, Kiedrowski B, Martz R, Mashnik S, McKinney G, Pelowitz D, Prael R, Sweezy J, Waters L, Wilcox T, Zukaitis T (2016) Features of MCNP6. Ann Nucl Energy 87:772–783. https://doi.org/10.1016/J.ANUCENE.2015.02.020

    Article  Google Scholar 

  23. Allison J et al (2016) Recent developments in GEANT4. Nucl Instruments Methods A 835:186–225. https://doi.org/10.1016/j.nima.2016.06.125

    Article  Google Scholar 

  24. Belgya T, Kis Z, Szentmiklósi L (2014) Neutron flux characterization of the cold beam PGAA-NIPS facility at the Budapest Research Reactor. Nucl Data Sheets 119:419–421. https://doi.org/10.1016/j.nds.2014.08.118

    Article  Google Scholar 

  25. Szentmiklósi L, Kis Z, Maróti B, Horváth LZ (2021) Correction for neutron self-shielding and gamma-ray self-absorption in prompt-gamma activation analysis for large and irregularly shaped samples. J Anal At Spectrom 36:103–110. https://doi.org/10.1039/D0JA00364F

    Article  Google Scholar 

  26. Wu Y, Song J, Zheng H, Sun G, Hao L, Long P, Hu L (2015) CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann Nucl Energy 82:161–168. https://doi.org/10.1016/J.ANUCENE.2014.08.058

    Article  Google Scholar 

  27. Kis Z, Belgya T, Szentmiklósi L (2011) Monte Carlo simulations towards semi-quantitative prompt gamma activation imaging. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 638:143–146. https://doi.org/10.1016/j.nima.2011.02.062

    Article  Google Scholar 

  28. Spyrou NM (1987) Prompt and delayed radiation measurements in the analysis of biological materials: the case for neutron induced gamma-ray emission tomography. J Radioanal Nucl Chem 110:641–653

    Article  Google Scholar 

  29. Spyrou Kusminarto NM, Nicolaou GE (1987) 2-D reconstruction of elemental distribution within a sample using neutron capture prompt gamma-rays. J Radioanal Nucl Chem Artic 112:57–64. https://doi.org/10.1007/BF02037276

    Article  Google Scholar 

  30. Segawa M, Matsue H, Kureta M (2009) Development of three-dimensional prompt γ-ray analysis system. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 605:54–56. https://doi.org/10.1016/j.nima.2009.01.127

    Article  Google Scholar 

  31. Todd RW, Nightingale JM, Everett DB (1974) A proposed γ camera. Nature 251:132–134. https://doi.org/10.1038/251132a0

    Article  Google Scholar 

  32. Hülber T (2012) Transmission, emission and excitation gamma tomography. Budapest University of Technology and Economics

    Google Scholar 

  33. Chen H, Chen-Mayer HH, Turkoglu DJ, Riley BK, Draeger E, Polf JP (2018) Spectroscopic Compton imaging of prompt gamma emission at the MeV energy range. J Radioanal Nucl Chem 318:241–246. https://doi.org/10.1007/s10967-018-6070-3

    Article  Google Scholar 

  34. IAEA. Research Reactor Database (2019). https://nucleus.iaea.org/RRDB/RR/. Accessed 13 May 2019

  35. Lehmann EH (2018) Using neutron imaging data for deeper understanding of cultural heritage objects experiences from 15+ years of collaborations. J Archaeol Sci Rep 19:397–404. https://doi.org/10.1016/j.jasrep.2018.02.046

    Article  Google Scholar 

  36. Révay Z, Ridikas D (2015) Database of PGNAA facilities, Database PGNAA Facil 92. https://nucleus.iaea.org/RRDB/Uploads/RRApplications/PGNAA Facilities Database v2015-02-19.pdf

  37. Szentmiklósi L, Maróti B, Kis Z, Janik J, Horváth LZ (2019) Use of 3D mesh geometries and additive manufacturing in neutron beam experiments. J Radioanal Nucl Chem 320:451–457. https://doi.org/10.1007/s10967-019-06482-0

    Article  Google Scholar 

  38. Ebert M ( 2009) Untersuchung archäologischer Objekte mit Neutronen. MSc thesis, Universität zu Köln

    Google Scholar 

  39. Szentmiklósi L, Kis Z, Belgya T, Kasztovszky Z, Kudejova P, Materna T, Schulze R, the A. CharmCollaboration (2009) The new PGAI-NT setup and the first elemental imaging experiments at the Budapest Research Reactor. In: 7th international conference on nuclear and radiochemistry. CD ROM

    Google Scholar 

  40. Szentmiklósi L, Kis Z, Belgya T, Berlizov AN (2013) On the design and installation of a Compton–suppressed HPGe spectrometer at the Budapest neutron-induced prompt gamma spectroscopy (NIPS) facility. J Radioanal Nucl Chem 298:1605–1611. https://doi.org/10.1007/s10967-013-2555-2

    Article  Google Scholar 

  41. Burca G, Kockelmann W, James JA, Fitzpatrick ME (2013) Modelling of an imaging beamline at the ISIS pulsed neutron source. J Instrum 8:–P10001. https://doi.org/10.1088/1748-0221/8/10/P10001

  42. Fazekas B, Belgya T, Dabolczi L, Molnár G, Simonits A (1996) HYPERMET-PC: program for automatic analysis of complex gamma- ray spectra. J Trace Microprobe Tech 14:167–172

    Google Scholar 

  43. Szentmiklósi L (2018) Fitting special peak shapes of prompt gamma spectra. J Radioanal Nucl Chem 315:663–670. https://doi.org/10.1007/s10967-017-5589-z

    Article  Google Scholar 

  44. Cnudde V, Vlassenbroeck J, Octopus, (2017). https://octopusimaging.eu/

  45. Kaestner AP (2017) User manual for KipTool, 10

    Google Scholar 

  46. Volume Graphics, VG Studio MAX, (2017). http://www.volumegraphics.com

  47. Heinz Maier-Leibnitz Zentrum, Révay Z (2015) PGAA: prompt gamma and in-beam neutron activation analysis facility. J Large-Scale Res Facil 1:1–3. https://doi.org/10.17815/jlsrf-1-46

  48. Werner L, Trunk M, Gernhäuser R, Gilles R, Märkisch B, Révay Z (2018) The new neutron depth profiling instrument N4DP at the Heinz Maier-Leibnitz Zentrum. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 911:30–36. https://doi.org/10.1016/j.nima.2018.09.113

    Article  Google Scholar 

  49. Kluge EJ, Stieghorst C, Wagner FE, Gebhard R, Révay Z, Jolie J (2018) Archaeometry at the PGAA facility of MLZ – prompt gamma-ray neutron activation analysis and neutron tomography. J Archaeol Sci Rep 20:303–306. https://doi.org/10.1016/j.jasrep.2018.04.018

    Article  Google Scholar 

  50. Kluge EJ, Stieghorst C, Révay Z, Kudějová P, Jolie J (2019) Optimization and characterization of the PGAI-NT instrument’s Neutron Tomography set-up at MLZ. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. https://doi.org/10.1016/j.nima.2019.04.011

  51. Kudejova P, Révay Z, Kleszcz K, Genreith C, Rossbach M (2015) High-flux PGAA for milligram-weight samples. EPJ Web Conf 93:08002. https://doi.org/10.1051/epjconf/20159308002

    Article  Google Scholar 

  52. Maróti B, Szentmiklósi L, Belgya T (2016) Comparison of low-energy and coaxial HPGe detectors for prompt gamma activation analysis of metallic samples. J Radioanal Nucl Chem 310:743–749. https://doi.org/10.1007/s10967-016-4822-5

    Article  Google Scholar 

  53. Schulze R (2010) Prompt Gamma-ray 3D-imaging for cultural heritage purposes, Universität zu Köln. https://kups.ub.uni-koeln.de/3151/

  54. Schulze R, Szentmiklósi L, Kudejova P, Canella L, Kis Z, Belgya T, Jolie J, Ebert M, Materna T, Biró KT, Hajnal Z (2013) The ANCIENT CHARM project at FRM II: three-dimensional elemental mapping by prompt gamma activation imaging and neutron tomography. J Anal At Spectrom 28:1508–1512. https://doi.org/10.1039/c3ja50162k

    Article  Google Scholar 

  55. Söllradl S, Mühlbauer MJ, Kudejova P, Türler A (2015) Development and test of a neutron imaging setup at the PGAA instrument at FRM II. Phys Procedia 69:130–137. https://doi.org/10.1016/j.phpro.2015.07.019

    Article  Google Scholar 

  56. Festa G, Andreani C, Arcidiacono L, Burca G, Kockelmann W, Minniti T, Senesi R (2017) Characterization of γ-ray background at IMAT beamline of ISIS Spallation Neutron Source. J Instrum 12:–P08005. https://doi.org/10.1088/1748-0221/12/08/P08005

  57. Toh Y, Ebihara M, Kimura A, Nakamura S, Harada H, Hara KY, Koizumi M, Kitatani F, Furutaka K (2014) Synergistic effect of combining two nondestructive analytical methods for multielemental analysis. Anal Chem 86:12030–12036. https://doi.org/10.1021/ac502632w

    Article  Google Scholar 

  58. Festa G, Arcidiacono L, Pappalardo A, Minniti T, Cazzaniga C, Scherillo A, Andreani C, Senesi R (2016) Isotope identification capabilities using time resolved prompt gamma emission from epithermal neutrons. J Instrum 11:C03060–C03060. https://doi.org/10.1088/1748-0221/11/03/C03060

    Article  Google Scholar 

  59. Festa G, Minniti T, Arcidiacono L, Borla M, Di Martino D, Facchetti F, Ferraris E, Turina V, Kockelmann W, Kelleher J, Senesi R, Greco C, Andreani C (2018) Egyptian Grave goods of Kha and Merit studied by neutron and gamma techniques. Angew Chemie Int Ed 57:7375–7379. https://doi.org/10.1002/anie.201713043

    Article  Google Scholar 

  60. Kobayashi H, Wakao H (1990) Accurate measurement of L, D, and L/D for divergent collimators. In: Fujine S, Kanda K, Matsumoto G, Barton JP (eds) Neutron radiography proceedings of the third world conference. Kluwer Academic Publishers, Dordrecht, pp 885–892

    Google Scholar 

  61. Kaestner AP, Kis Z, Radebe MJ, Mannes D, Hovind J, Grünzweig C, Kardjilov N, Lehmann EH (2017) Samples to determine the resolution of neutron radiography and tomography. Phys Procedia 88:258–265. https://doi.org/10.1016/j.phpro.2017.06.036

    Article  Google Scholar 

  62. Watkinson D, Rimmer M, Kasztovszky Z, Kis Z, Maróti B, Szentmiklósi L (2014) The use of neutron analysis techniques for detecting the concentration and distribution of chloride ions in archaeological iron. Archaeometry 56:841–859. https://doi.org/10.1111/arcm.12058

    Article  Google Scholar 

  63. Canella L, Kudějová P, Schulze R, Türler A, Jolie J (2009) PGAA, PGAI and NT with cold neutrons: test measurement on a meteorite sample. Appl Radiat Isot 67:2070–2074. https://doi.org/10.1016/j.apradiso.2009.05.008

    Article  Google Scholar 

  64. Hungarian National Museum (2008) Datasheet for cultural heritage objects to be analysed within the Ancient Charm project. http://www.ace.hu/acharm/obj_datasheet_HNM.pdf

  65. Caumes J-P, Younus A, Salort S, Chassagne B, Recur B, Ziéglé A, Dautant A, Abraham E (2011) Terahertz tomographic imaging of XVIIIth Dynasty Egyptian sealed pottery. Appl Opt 50:3604. https://doi.org/10.1364/AO.50.003604

    Article  Google Scholar 

  66. Abraham E, Bessou M, Ziéglé A, Hervé M-C, Szentmiklósi L, Kasztovszky Z, Kis Z, Menu M (2014) Terahertz, X-ray and neutron computed tomography of an Eighteenth Dynasty Egyptian sealed pottery. Appl Phys A Mater Sci Process 117:963–972. https://doi.org/10.1007/s00339-014-8779-3

    Article  Google Scholar 

  67. Kis Z, Sciarretta F, Szentmiklósi L (2017) Water uptake experiments of historic construction materials from Venice by neutron imaging and PGAI methods. Mater Struct Constr 50:159–173. https://doi.org/10.1617/s11527-017-1004-z

    Article  Google Scholar 

  68. Kis Z, Szentmiklósi L, Schulze R, Abraham E (2017) Prompt gamma activation imaging (PGAI). Neutron Methods Archaeol Cult Herit:303–320. https://doi.org/10.1007/978-3-319-33163-8_14

Download references

Acknowledgments

L.Sz. gratefully acknowledges the financial support of the János Bolyai Research Fellowship of the Hungarian Academy of Sciences, and the Project No. 124068 of the National Research, Development and Innovation Fund of Hungary, financed under the K_17 funding scheme. Some of the experiments presented here were carried out with financial contributions from the CHARISMA (EC FP7 Grant No: 228330) and IPERION CH (EC H2020 Grant No: 654028) projects. We are thankful to colleagues in the ANCIENT CHARM (EC NEST Grant No: 015311) project, especially the FRM II PGAA team, for the successful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Szentmiklósi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Szentmiklósi, L., Kis, Z., Maróti, B. (2022). Integration of Neutron-Based Elemental Analysis and Imaging to Characterize Complex Cultural Heritage Objects. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_10

Download citation

Publish with us

Policies and ethics