Skip to main content

Wild Pollinators in Arable Habitats: Trends, Threats and Opportunities

  • Chapter
  • First Online:
The Changing Status of Arable Habitats in Europe

Abstract

The dramatic declines in pollinator (social and solitary bees, wasps, flies, beetles, butterflies, and moths) abundance and diversity observed in Europe and globally in recent decades have generated widespread scientific and societal concern. It is particularly important to conserve healthy populations of pollinators in arable landscapes because of the ‘ecosystem service’ they provide to mass flowering crops such as field beans. Changes in land use prior to the 1970s led to declines in more specialist bee species that have now become rare or extinct in arable landscapes, being replaced by a more generalist, resilient pollinator community. Responses of pollinators to agricultural intensification since the 1970s are subtle and need to be interpreted in the context of other drivers including climate change and pathogen load. However, it is incontrovertible that agricultural practices such as the use of pesticides and loss of semi-natural habitat can have a detrimental effect on pollinator communities and the ecosystem service they provide. It is vital, therefore, that arable landscapes are managed in a way that provides sufficient resource and nesting habitat and either avoids or mitigates exposure to pesticides; the efficacy of specific measures to achieve this are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baron GL, Jansen VAA, Brown MJF, Raine NE (2017a) Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nat Ecol Evol 1(9):1308–1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Baron GL, Raine NE, Brown MJF (2017b) General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proc R Soc B Biol Sci 284(1854):8

    Google Scholar 

  • Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MAK, Morton RD, Smart SM, Memmott J (2016) Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530(7588):85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell JR, Blumgart D, Shortall CR (2020) Are insects declining and at what rate? An analysis of standardised, systematic catches of aphid and moth abundances across Great Britain. Insect Conserv Divers 13(2):115–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett AB, Isaacs R (2014) Landscape composition influences pollinators and pollination services in perennial biofuel plantings. Agric Ecosyst Environ 193:1–8

    Article  Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemuller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354

    Article  CAS  PubMed  Google Scholar 

  • Blaauw BR, Isaacs R (2014) Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J Appl Ecol 51(4):890–898

    Article  Google Scholar 

  • Bretagnolle V, Gaba S (2015) Weeds for bees? A review. Agron Sustain Dev 35(3):891–909

    Article  Google Scholar 

  • Butler SJ, Brooks D, Feber RE, Storkey J, Vickery JA, Norris K (2009) A cross-taxonomic index for quantifying the health of farmland biodiversity. J Appl Ecol 46(6):1154–1162

    Google Scholar 

  • Carvalheiro LG, Kunin WE, Keil P, Aguirre-Gutierrez J, Ellis WN, Fox R, Groom Q, Hennekens S, Van Landuyt W, Maes D, Van de Meutter F, Michez D, Rasmont P, Ode B, Potts SG, Reemer M, Roberts SPM, Schaminee J, Wallis de Vries MF, Biesmeijer JC (2013) Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol Lett 16(7):870–878

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvell C, Bourke AFG, Osborne JL, Heard MS (2015) Effects of an agri-environment scheme on bumblebee reproduction at local and landscape scales. Basic Appl Ecol 16(6):519–530

    Article  Google Scholar 

  • Carvell C, Bourke AFG, Dreier S, Freeman SN, Hulmes S, Jordan WC, Redhead JW, Sumner S, Wang J, Heard MS (2017) Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543(7646):547–549

    Article  CAS  PubMed  Google Scholar 

  • Casey LM, Rebelo H, Rotheray E, Goulson D (2015) Evidence for habitat and climatic specializations driving the long-term distribution trends of UK and Irish bumblebees. Divers Distrib 21(8):864–875

    Article  Google Scholar 

  • Chamberlain DE, Fuller RJ, Bunce RGH, Duckworth JC, Shrubb M (2000) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J Appl Ecol 37(5):771–788

    Article  Google Scholar 

  • Cole LJ, Kleijn D, Dicks LV et al (2020) A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. J Appl Ecol 57:681–694

    Article  PubMed  PubMed Central  Google Scholar 

  • Conrad KF, Warren MS, Fox R, Parsons MS, Woiwod IP (2006) Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol Conserv 132(3):279–291

    Article  Google Scholar 

  • De Palma A, Kuhlmann M, Roberts SPM, Potts SG, Borger L, Hudson LN, Lysenko I, Newbold T, Purvis A (2015) Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J Appl Ecol 52(6):1567–1577

    Article  PubMed  PubMed Central  Google Scholar 

  • Dicks LV, Baude M, Roberts SPM, Phillips J, Green M, Carvell C (2015) How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge. Ecol Entomol 40:22–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc London Ser B Biol Sci 268(1462):25–29

    Article  Google Scholar 

  • Forrest JRK, Thorp RW, Kremen C, Williams NM (2015) Contrasting patterns in species and functional-trait diversity of bees in an agricultural landscape. J Appl Ecol 52(3):706–715

    Article  Google Scholar 

  • Fox R, Brereton TM, Asher J, August TA, Botham MS, Bourn NAD (2015) The state of the UK’s butterflies 2015. Butterfly Conservation and the Centre for Ecology & Hydrology, Wareham

    Google Scholar 

  • Gabriel D, Tscharntke T (2007) Insect pollinated plants benefit from organic farming. Agric Ecosyst Environ 118(1–4):43–48

    Article  Google Scholar 

  • Garibaldi LA, Carvalheiro LG, Leonhardt SD, Aizen MA, Blaauw BR, Isaacs R, Kuhlmann M, Kleijn D, Klein AM, Kremen C, Morandin L, Scheper J, Winfree R (2014) From research to action: enhancing crop yield through wild pollinators. Front Ecol Environ 12(8):439–447

    Article  Google Scholar 

  • Gibson RH, Nelson IL, Hopkins GW, Hamlett BJ, Memmott J (2006) Pollinator webs, plant communities and the conservation of rare plants: arable weeds as a case study. J Appl Ecol 43(2):246–257

    Article  Google Scholar 

  • Godfray HCJ, Blacquiere T, Field LM, Hails RS, Potts SG, Raine NE, Vanbergen AJ, McLean AR (2015) A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc R Soc B Biol Sci 282(1818):6

    Google Scholar 

  • Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229):10

    Article  CAS  Google Scholar 

  • Hardman CJ, Norris K, Nevard TD, Hughes B, Potts SG (2016) Delivery of floral resources and pollination services on farmland under three different wildlife-friendly schemes. Agric Ecosyst Environ 220:142–151

    Article  Google Scholar 

  • Holland JM, Smith BM, Storkey J, Lutman PJW, Aebischer NJ (2015) Managing habitats on English farmland for insect pollinator conservation. Biol Conserv 182:215–222

    Article  Google Scholar 

  • Holzschuh A, Dainese M, Gonzalez-Varo JP, Mudri-Stojnic S, Riedinger V, Rundlof M, Scheper J, Wickens JB, Wickens VJ, Bommarco R, Kleijn D, Potts SG, Roberts SPM, Smith HG, Vila M, Vujic A, Steffan-Dewenter I (2016) Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol Lett 19(10):1228–1236

    Article  PubMed  PubMed Central  Google Scholar 

  • Iles DT, Williams NM, Crone EE (2018) Source-sink dynamics of bumblebees in rapidly changing landscapes. J Appl Ecol 55(6):2802–2811

    Article  Google Scholar 

  • Isaac NJB, van Strien AJ, August TA, de Zeeuw MP, Roy DB (2014) Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol Evol 5(10):1052–1060

    Article  Google Scholar 

  • Kessler SC, Tiedeken EJ, Simcock KL, Derveau S, Mitchell J, Softley S, Stout JC, Wright GA (2015) Bees prefer foods containing neonicotinoid pesticides. Nature 521(7550):74–U145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs-Hostyanszki A, Espindola A, Vanbergen AJ, Settele J, Kremen C, Dicks LV (2017) Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol Lett 20(5):673–689

    Article  PubMed  PubMed Central  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci U S A 99(26):16812–16816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Feon V, Burel F, Chifflet R, Henry M, Ricroch A, Vaissiere BE, Baudry J (2013) Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric Ecosyst Environ 166:94–101

    Article  Google Scholar 

  • Macgregor CJ, Williams JH, Bell JR, Thomas CD (2019) Moth biomass increases and decreases over 50 years in Britain. Nat Ecol Evol 3(12):1645–1649

    Article  PubMed  Google Scholar 

  • Marini L, Ockinger E, Bergman KO, Jauker B, Krauss J, Kuussaari M, Poyry J, Smith HG, Steffan-Dewenter I, Bommarco R (2014) Contrasting effects of habitat area and connectivity on evenness of pollinator communities. Ecography 37(6):544–551

    Article  Google Scholar 

  • M’Gonigle LK, Ponisio LC, Cutler K, Kremen C (2015) Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecol Appl 25(6):1557–1565

    Article  PubMed  Google Scholar 

  • Nieto A, Roberts SPM, Kemp J, Rasmont P, Kuhlman M, Garcia Criado M (2014) European red list of bees. Publication Office of the European Union, Luxembourg

    Google Scholar 

  • Norton LR, Maskell LC, Smart SS, Dunbar MJ, Emmett BA, Carey PD, Williams P, Crowe A, Chandler K, Scott WA, Wood CM (2012) Measuring stock and change in the GB countryside for policy – Key findings and developments from the Countryside Survey 2007 field survey. J Environ Manag 113:117–127

    Article  CAS  Google Scholar 

  • Ollerton J, Erenler H, Edwards M, Crockett R (2014) Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346(6215):1360–1362

    Article  CAS  PubMed  Google Scholar 

  • Osborne JL, Martin AP, Shortall CR, Todd AD, Goulson D, Knight ME, Hale RJ, Sanderson RA (2008) Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. J Appl Ecol 45(3):784–792

    Article  Google Scholar 

  • Pe’er G, Zinngrebe Y, Hauck J, Schindler S, Dittrich A, Zingg S, Tscharntke T, Oppermann R, Sutcliffe LME, Sirami C, Schmidt J, Hoyer C, Schleyer C, Lakner S (2017) Adding some green to the greening: improving the EU’s Ecological Focus Areas for biodiversity and farmers. Conserv Lett 10(5):517–530

    Article  Google Scholar 

  • Pocock MJO, Evans DM, Memmott J (2012) The robustness and restoration of a network of ecological networks. Science 335(6071):973–977

    Article  CAS  PubMed  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

    Article  PubMed  Google Scholar 

  • Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ (2016) Safeguarding pollinators and their values to human well-being. Nature 540(7632):220–229

    Article  CAS  PubMed  Google Scholar 

  • Powney GD, August TA, Harrower C, Outhwaite C, Isaac NJB (2017) UK Biodiversity Indicators 2017: D1c Status of pollinating insects. Technical background document. JNCC/Centre for Ecology and Hydrology, UK

    Google Scholar 

  • Powney GD, Harrower C, Outhwaite C, Isaac NJB (2018) UK Biodiversity Indicators 2018: D1c Status of pollinating insects. Technical background document. JNCC/Centre for Ecology and Hydrology, UK

    Google Scholar 

  • Powney GD, Carvell C, Edwards M, Morris RKA, Roy HE, Woodcock BA, Isaac NJB (2019) Widespread losses of pollinating insects in Britain. Nat Commun 10:6

    Article  CAS  Google Scholar 

  • Pywell RF, Heard MS, Woodcock BA, Hinsley S, Ridding L, Nowakowski M, Bullock JM (2015) Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc R Soc B Biol Sci 282(1816):8

    Google Scholar 

  • Redhead JW, Woodcock B, Pocock MJO, Pywell RF, Vanbergen AJ, Oliver TH (2018) Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecol Lett 21(12):1821–1832

    Article  PubMed  Google Scholar 

  • Richner N, Holderegger R, Linder HP, Walter T (2015) Reviewing change in the arable flora of Europe: a meta-analysis. Weed Res 55(1):1–13

    Article  Google Scholar 

  • Riedinger V, Mitesser O, Hovestadt T, Steffan-Dewenter I, Holzschuh A (2015) Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape. Ecology 96(5):1351–1360

    Article  PubMed  Google Scholar 

  • Robleno I, Storkey J, Sole-Senan XO, Recasens J (2018) Using the response-effect trait framework to quantify the value of fallow patches in agricultural landscapes to pollinators. Appl Veg Sci 21(2):267–277

    Article  Google Scholar 

  • Rundlof M, Andersson GKS, Bommarco R, Fries I, Hederstrom V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG (2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521(7550):77–80

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Article  Google Scholar 

  • Scheper J, Holzschuh A, Kuussaari M, Potts SG, Rundlof M, Smith HG, Kleijn D (2013) Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss – a meta-analysis. Ecol Lett 16(7):912–920

    Article  PubMed  Google Scholar 

  • Scheper J, Bommarco R, Holzschuh A, Potts SG, Riedinger V, Roberts SPM, Rundlof M, Smith HG, Steffan-Dewenter I, Wickens JB, Wickens VJ, Kleijn D (2015) Local and landscape-level floral resources explain effects of wildflower strips on wild bees across four European countries. J Appl Ecol 52(5):1165–1175

    Article  Google Scholar 

  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, Furlan L, Gibbons DW, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke CH, Liess M, Long E, McField M, Mineau P, Mitchell EAD, Morrissey CA, Noome DA, Pisa L, Settele J, Stark JD, Tapparo A, Van Dyck H, Van Praagh J, van der Sluijs JP, Whitehorn PR, Wiemers M (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res 22(1):5–34

    Article  CAS  Google Scholar 

  • Siriwardena GM, Baillie SR, Buckland ST, Fewster RM, Marchant JH, Wilson JD (1998) Trends in the abundance of farmland birds: a quantitative comparison of smoothed Common Birds Census indices. J Appl Ecol 35(1):24–43

    Article  Google Scholar 

  • Siviter H, Koricheva J, Brown MJF, Leadbeater E (2018) Quantifying the impact of pesticides on learning and memory in bees. J Appl Ecol 55(6):2812–2821

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanley DA, Raine NE (2017) Bumblebee colony development following chronic exposure to field-realistic levels of the neonicotinoid pesticide thiamethoxam under laboratory conditions. Sci Rep 7

    Google Scholar 

  • Stanley DA, Garratt MPD, Wickens JB, Wickens VJ, Potts SG, Raine NE (2015) Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528(7583):548–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steckel J, Westphal C, Peters MK, Bellach M, Rothenwoehrer C, Erasmi S, Scherber C, Tscharntke T, Steffan-Dewenter I (2014) Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol Conserv 172:56–64

    Article  Google Scholar 

  • Storkey J, Meyer S, Still KS, Leuschner C (2012) The impact of agricultural intensification and land-use change on the European arable flora. Proc R Soc B Biol Sci 279(1732):1421–1429

    Article  CAS  Google Scholar 

  • Storkey J, Macdonald AJ, Bell JR, Clark IM, Gregory AS, Hawkins NJ, Hirsch PR, Todman LC, Whitmore AP (2016) The unique contribution of Rothamsted to ecological research at large temporal scales In: Dumbrell AJ, Kordas RL, Woodward G (eds) Advances in ecological research, vol 55: large-scale ecology: model systems to global perspectives, vol 55, pp 3–42

    Google Scholar 

  • van Geert A, van Rossum F, Triest L (2010) Do linear landscape elements in farmland act as biological corridors for pollen dispersal? J Ecol 98(1):178–187

    Article  Google Scholar 

  • van Strien AJ, van Swaay CAM, Termaat T (2013) Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J Appl Ecol 50(6):1450–1458

    Article  Google Scholar 

  • Vanbergen AJ, Baude M, Biesmeijer JC, Britton NF, Brown MJF, Brown M, Bryden J, Budge GE, Bull JC, Carvell C, Challinor AJ, Connolly CN, Evans DJ, Feil EJ, Garratt MP, Greco MK, Heard MS, Jansen VAA, Keeling MJ, Kunis WE, Marris GC, Memmott J, Murray JT, Nicolson SW, Osborne JL, Paxton RJ, Pirk CWW, Polce C, Potts SG, Priest NK, Raine NE, Roberts S, Ryabov EV, Shafir S, Shirley MDF, Simpson SJ, Stevenson PC, Stone GN, Termansen M, Wright GA, Insect Pollinators Initiative (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ 11(5):251–259

    Article  Google Scholar 

  • Vanbergen AJ, Heard MS, Breeze TD, Potts SG, Hanley N (2014) Status and value of pollinators and pollination services. Department for the Environment, Food and Rural Affairs, London

    Google Scholar 

  • Wood TJ, Holland JM, Hughes WHO, Goulson D (2015) Targeted agri-environment schemes significantly improve the population size of common farmland bumblebee species. Mol Ecol 24(8):1668–1680

    Article  PubMed  Google Scholar 

  • Woodcock BA, Isaac NJB, Bullock JM, Roy DB, Garthwaite DG, Crowe A, Pywell RF (2016) Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat Commun 7:8

    Article  CAS  Google Scholar 

  • Woodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG, Redhead J, Ridding L, Dean H, Sleep D, Henrys P, Peyton J, Hulmes S, Hulmes L, Sarospataki M, Saure C, Edwards M, Genersch E, Knabe S, Pywell RF (2017) Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356(6345):1393–1395

    Article  CAS  PubMed  Google Scholar 

  • Woodcock BA, Garratt MPD, Powney GD, Shaw RF, Osborne JL, Soroka J, Lindstrom SAM, Stanley D, Ouvrard P, Edwards ME, Jauker F, McCracken ME, Zou Y, Potts SG, Rundlof M, Noriega JA, Greenop A, Smith HG, Bommarco R, van der Werf W, Stout JC, Steffan-Dewenter I, Morandin L, Bullock JM, Pywell RF (2019) Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat Commun 10:10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank The Department for Environment, Food and Rural Affairs (Defra), UK, for permission to use extracts from the Defra publication “Management and drivers of change of pollinating insects and pollination services – BE0160.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Storkey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Storkey, J., Brown, M.J.F., Carvell, C., Dicks, L.V., Senapathi, D. (2020). Wild Pollinators in Arable Habitats: Trends, Threats and Opportunities. In: Hurford, C., Wilson, P., Storkey, J. (eds) The Changing Status of Arable Habitats in Europe. Springer, Cham. https://doi.org/10.1007/978-3-030-59875-4_13

Download citation

Publish with us

Policies and ethics