Skip to main content

Platooning of Automated Ground Vehicles to Connect Port and Hinterland: A Multi-objective Optimization Approach

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12433))

Included in the following conference series:

Abstract

Automated ground vehicles (AGVs) are essential parts of container operations at many ports. Forming platoons—as conceptually established in trucking—may allow these vehicles to directly cater demand points such as dry ports in the hinterland. In this work, we aim to assess such AGV platoons in terms of operational efficiency and costs, considering the case of the Port of Rotterdam. We propose a multi-objective mixed-integer programming model that minimizes dwell and idle times, on the one hand, and the total cost of the system involving transportation, labor, and platoon formation costs, on the other hand. To achieve Pareto optimal solutions that capture the trade-offs between minimizing cost and time, we apply an augmented epsilon constraint method. The results indicate that all the containers are delivered by AGVs. This not only shortens the dwell time of the containers by decreasing loading/unloading processes and eliminating stacking but also leads to considerable cost savings.

This research is supported by the project “Dynamic Fleet Management (P14-18 – project 3)” (project 14894) of the Netherlands Organization for Scientific Research (NWO), domain Applied and Engineering Sciences (TTW).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhoopalam, A.K., Agatz, N., Zuidwijk, R.: Planning of truck platoons: a literature review and directions for future research. Transp. Res. Part B: Methodol. 107, 212–228 (2018)

    Article  Google Scholar 

  2. Boysen, N., Briskorn, D., Schwerdfeger, S.: The identical-path truck platooning problem. Transp. Res. Part B: Methodol. 109, 26–39 (2018)

    Article  Google Scholar 

  3. Briskorn, D., Drexl, A., Hartmann, S.: Inventory-based dispatching of automated guided vehicles on container terminals. In: Kim, K.H., Günther, H.-O. (eds.) Container Terminals and Cargo Systems, pp. 195–214. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49550-5_10

    Chapter  Google Scholar 

  4. Cheng, Y.L., Sen, H.C., Natarajan, K., Teo, C.P., Tan, K.C.: Dispatching automated guided vehicles in a container terminal. In: Geunes, J., Pardalos, P.M. (eds) Supply Chain Optimization. Applied Optimization, vol. 98. Springer, Boston (2005). https://doi.org/10.1007/0-387-26281-4_11

  5. Corréa, A.I., Langevin, A., Rousseau, L.M.: Scheduling and routing of automated guided vehicles: a hybrid approach. Comput. Oper. Res. 34(6), 1688–1707 (2007)

    Article  Google Scholar 

  6. Delimpaltadakis, I.M., Bechlioulis, C.P., Kyriakopoulos, K.J.: Decentralized platooning with obstacle avoidance for car-like vehicles with limited sensing. IEEE Robot. Autom. Lett. 3(2), 835–840 (2018)

    Article  Google Scholar 

  7. Gerrits, B., Mes, M., Schuur, P.: Simulation of real-time and opportunistic truck platooning at the port of Rotterdam. In: 2019 Proceedings of the Winter Simulation Conference (WSC), pp. 133–144. IEEE (2019)

    Google Scholar 

  8. Hickman, J., Hassel, D., Joumard, R., Samaras, Z., Sorenson, S.: Methodology for calculating transport emissions and energy consumption (1999)

    Google Scholar 

  9. Janssen, G.R., Zwijnenberg, J., Blankers, I., de Kruijff, J.: Truck platooning: driving the future of transportation - TNO whitepaper (2015)

    Google Scholar 

  10. Kim, K.H., Bae, J.W.: A look-ahead dispatching method for automated guided vehicles in automated port container terminals. Transp. Sci. 38(2), 224–234 (2004)

    Article  Google Scholar 

  11. Larson, J., Munson, T., Sokolov, V.: Coordinated platoon routing in a metropolitan network. In: 2016 Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific Computing, pp. 73–82. SIAM (2016)

    Google Scholar 

  12. Larsson, E., Sennton, G., Larson, J.: The vehicle platooning problem: computational complexity and heuristics. Transp. Res. Part C: Emerg. Technol. 60, 258–277 (2015)

    Article  Google Scholar 

  13. Liang, X., Guler, S.I., Gayah, V.V.: Signal timing optimization with connected vehicle technology: platooning to improve computational efficiency. Transp. Res. Rec. 2672(18), 81–92 (2018)

    Article  Google Scholar 

  14. Mavrotas, G.: Effective implementation of the \(\varepsilon \)-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213(2), 455–465 (2009)

    Article  MathSciNet  Google Scholar 

  15. Qiu, L., Hsu, W.J., Huang, S.Y., Wang, H.: Scheduling and routing algorithms for AGVs: a survey. Int. J. Prod. Res. 40(3), 745–760 (2002)

    Article  Google Scholar 

  16. Scherr, Y.O., Neumann-Saavedra, B.A., Hewitt, M., Mattfeld, D.C.: Service network design for same day delivery with mixed autonomous fleets. Transp. Res. Procedia 30, 23–32 (2018)

    Article  Google Scholar 

  17. Scherr, Y.O., Neumann-Saavedra, B.A., Hewitt, M., Mattfeld, D.C.: Service network design with mixed autonomous fleets. Transp. Res. Part E: Logist. Transp. Rev. 124, 40–55 (2019)

    Article  Google Scholar 

  18. Tavakkoli-Moghaddam, R., Sadri, S., Pourmohammad-Zia, N., Mohammadi, M.: A hybrid fuzzy approach for the closed-loop supply chain network design under uncertainty. J. Intell. Fuzzy Syst. 28(6), 2811–2826 (2015)

    Article  Google Scholar 

  19. Xin, J., Negenborn, R.R., Corman, F., Lodewijks, G.: Control of interacting machines in automated container terminals using a sequential planning approach for collision avoidance. Transp. Res. Part C: Emerg. Technol. 60, 377–396 (2015)

    Article  Google Scholar 

  20. Zhang, W., Jenelius, E., Ma, X.: Freight transport platoon coordination and departure time scheduling under travel time uncertainty. Transp. Res. Part E: Logist. Transp. Rev. 98, 1–23 (2017)

    Article  Google Scholar 

  21. Zhong, M., Yang, Y., Dessouky, Y., Postolache, O.: Multi-AGV scheduling for conflict-free path planning in automated container terminals. Comput. Ind. Eng. 142, 106371 (2020)

    Article  Google Scholar 

  22. Zhong, Z., Lee, J., Zhao, L.: Multiobjective optimization framework for cooperative adaptive cruise control vehicles in the automated vehicle platooning environment. Transp. Res. Rec. 2625(1), 32–42 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Pourmohammad-Zia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pourmohammad-Zia, N., Schulte, F., Souravlias, D., Negenborn, R.R. (2020). Platooning of Automated Ground Vehicles to Connect Port and Hinterland: A Multi-objective Optimization Approach. In: Lalla-Ruiz, E., Mes, M., VoĂź, S. (eds) Computational Logistics. ICCL 2020. Lecture Notes in Computer Science(), vol 12433. Springer, Cham. https://doi.org/10.1007/978-3-030-59747-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59747-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59746-7

  • Online ISBN: 978-3-030-59747-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics