Skip to main content

Learning with Sure Data for Nodule-Level Lung Cancer Prediction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12266))

Abstract

Recent evolution in image-based disease prediction based on deep learning has significantly extended the clinical capabilities of these systems. However, in certain cases (e.g. lung nodule prediction), ground truth labels manually annotated by radiologists (unsure data) are often based on subjective assessment, which lack pathological-proven benchmarks (sure data) at the nodule-level. To address this issue, we build a small yet definite CT dataset (171 patients) called SCH-LND focusing on solid lung nodules (90 benign/90 malignant cases). Under the supervision of SCH-LND dataset, many hidden drawbacks of unsure data (484 solid nodules selected from LIDC-IDRI dataset) served for malignancy prediction are objectively revealed. Explanations to this phenomenon are inferred in this paper from the view of model training and data annotation bias. Although learning from scratch over sure data with commonly used model can surpass the performance of unsure data in large scales, we additionally propose two frameworks to make the best use of these cross-domain resources, among which, transfer learning is verified as an effective approach for LIDC-IDRI knowledge adaptation. Results show that the proposed method can achieve good performance for nodule-level malignancy prediction with a small SCH-LND dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armato III, S.G.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  2. Han, F., et al.: A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database. In: 2013 IEEE International Conference on Medical Imaging Physics and Engineering, pp. 14–18. IEEE (2013)

    Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  4. Hussein, S., Cao, K., Song, Q., Bagci, U.: Risk stratification of lung nodules using 3D CNN-based multi-task learning. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 249–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_20

    Chapter  Google Scholar 

  5. Hussein, S., Gillies, R., Cao, K., Song, Q., Bagci, U.: TumorNet: lung nodule characterization using multi-view convolutional neural network with Gaussian process. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 1007–1010. IEEE (2017)

    Google Scholar 

  6. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  7. Kumar, D., Chung, A.G., Shaifee, M.J., Khalvati, F., Haider, M.A., Wong, A.: Discovery radiomics for pathologically-proven computed tomography lung cancer prediction. In: Karray, F., Campilho, A., Cheriet, F. (eds.) ICIAR 2017. LNCS, vol. 10317, pp. 54–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59876-5_7

    Chapter  Google Scholar 

  8. McNitt-Gray, M.F., et al.: The lung image database consortium (LIDC) data collection process for nodule detection and annotation. Acad. Radiol. 14(12), 1464–1474 (2007)

    Article  Google Scholar 

  9. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  10. Shen, W., et al.: Learning from experts: developing transferable deep features for patient-level lung cancer prediction. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 124–131. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_15

    Chapter  Google Scholar 

  11. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J.: Multi-scale convolutional neural networks for lung nodule classification. In: Ourselin, S., Alexander, D.C., Westin, C.-F., Cardoso, M.J. (eds.) IPMI 2015. LNCS, vol. 9123, pp. 588–599. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19992-4_46

    Chapter  Google Scholar 

  12. Wu, B., Sun, X., Hu, L., Wang, Y.: Learning with unsure data for medical image diagnosis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10590–10599 (2019)

    Google Scholar 

  13. Wu, B., Zhou, Z., Wang, J., Wang, Y.: Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1109–1113. IEEE (2018)

    Google Scholar 

  14. Wu, Y., He, K.: Group normalization. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  15. Zhou, Z., et al.: Models genesis: generic autodidactic models for 3D medical image analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 384–393. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_42

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanxiao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Gu, Y., Qin, Y., Yao, F., Yang, GZ. (2020). Learning with Sure Data for Nodule-Level Lung Cancer Prediction. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics