Skip to main content

Data-Driven Multi-contrast Spectral Microstructure Imaging with InSpect

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

We introduce and demonstrate an unsupervised machine learning method for spectroscopic analysis of quantitative MRI (qMRI) experiments. qMRI data can support estimation of multidimensional correlation (or single-dimensional) spectra, which allow model-free investigation of tissue properties, but this requires an ill-posed calculation. Moreover, in the vast majority of applications ground truth knowledge is unobtainable, preventing the application of supervised machine learning. Here we present a new method that addresses these limitations in a data-driven way. The algorithm simultaneously estimates a canonical basis of spectral components and voxelwise maps of their weightings, thereby pooling information across whole images to regularise the ill-posed problem. We show that our algorithm substantially outperforms current voxelwise spectral approaches. We demonstrate the method on combined diffusion-relaxometry placental MRI scans, revealing anatomically-relevant substructures, and identifying dysfunctional placentas. Our algorithm vastly reduces the data required to reliably estimate multidimensional correlation (or single-dimensional) spectra, opening up the possibility of spectroscopic imaging in a wide range of new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso-Ortiz, E., Levesque, I.R., Pike, G.B.: MRI-based myelin water imaging: a technical review. Magn. Reson. Med. 73(1), 70–81 (2015). https://doi.org/10.1002/mrm.25198

    Article  Google Scholar 

  2. Benjamini, D., Basser, P.J.: Use of marginal distributions constrained optimization (MADCO) for accelerated 2D MRI relaxometry and diffusometry. J. Magn. Reson. 271, 40–45 (2016). https://doi.org/10.1016/j.jmr.2016.08.004

    Article  Google Scholar 

  3. Benjamini, D., Basser, P.J.: Magnetic resonance microdynamic imaging reveals distinct tissue microenvironments. NeuroImage 163, 183–196 (2017). https://doi.org/10.1016/j.neuroimage.2017.09.033

    Article  Google Scholar 

  4. Benjamini, D., Basser, P.J.: Multidimensional correlation MRI. NMR Biomed. (2020). https://doi.org/10.1002/nbm.4226

  5. Benjamini, D., Komlosh, M.E., Basser, P.J.: Imaging local diffusive dynamics using diffusion exchange spectroscopy MRI. Phys. Rev. Lett. 118(15), 158003 (2017). https://doi.org/10.1103/PhysRevLett.118.158003

    Article  Google Scholar 

  6. Breen-Norris, J.O., et al.: Measuring diffusion exchange across the cell membrane with DEXSY (Diffusion Exchange Spectroscopy). Magn. Reson. Med. (2019), 1–9 (2020). https://doi.org/10.1002/mrm.28207

  7. De Santis, S., Assaf, Y., Jeurissen, B., Jones, D.K., Roebroeck, A.: T1 relaxometry of crossing fibres in the human brain. NeuroImage 141, 133–142 (2016). https://doi.org/10.1016/J.NEUROIMAGE.2016.07.037

    Article  Google Scholar 

  8. De Santis, S., Barazany, D., Jones, D.K., Assaf, Y.: Resolving relaxometry and diffusion properties within the same voxel in the presence of crossing fibres by combining inversion recovery and diffusion-weighted acquisitions. Magn. Reson. Med. 75(1), 372–380 (2016). https://doi.org/10.1002/mrm.25644

    Article  Google Scholar 

  9. English, A.E., Whittall, K.P., Joy, M.L., Henkelman, R.M.: Quantitative two-dimensional time correlation relaxometry. Magn. Reson. Med. 22(2), 425–434 (1991). https://doi.org/10.1002/mrm.1910220250

    Article  Google Scholar 

  10. Hansen, P.C.: Analysis of discrete Ill-posed problems by means of the L-Curve. SIAM Rev. 34(4), 561–580 (1992). https://doi.org/10.1137/1034115

    Article  MathSciNet  MATH  Google Scholar 

  11. Hutter, J., et al.: Integrated and efficient diffusion-relaxometry using ZEBRA. Sci. Rep. 8(1), 15138 (2018). https://doi.org/10.1038/s41598-018-33463-2

    Article  Google Scholar 

  12. Kim, D., Doyle, E.K., Wisnowski, J.L., Kim, J.H., Haldar, J.P.: Diffusion-relaxation correlation spectroscopic imaging: a multidimensional approach for probing microstructure. Magn. Reson. Med. 78(6), 2236–2249 (2017). https://doi.org/10.1002/mrm.26629

    Article  Google Scholar 

  13. Kim, D., Kim, J.H., Haldar, J.P.: automatic tissue decomposition using nonnegative matrix factorization for noisy MR magnitude images. ISMRM 2015(February), 3701 (2015)

    Google Scholar 

  14. Kim, D., Wisnowski, J.L., Haldar, J.P.: Improved efficiency for microstructure imaging using high-dimensional MR correlation spectroscopic imaging. In: 2017 51st Asilomar Conference on Signals, Systems, and Computers, pp. 1264–1268. IEEE, October 2017. https://doi.org/10.1109/ACSSC.2017.8335555

  15. Kim, D., Wisnowski, J.L., Nguyen, C.T., Haldar, J.P.: Multidimensional correlation spectroscopic imaging of exponential decays: from theoretical principles to in vivo human applications. NMR Biomed. (2019), 1–19 (2020). https://doi.org/10.1002/nbm.4244

  16. Mackay, A., Whittall, K., Adler, J., Li, D., Paty, D., Graeb, D.: In vivo visualization of myelin water in brain by magnetic resonance. Magn. Reson. Med. 31(6), 673–677 (1994). https://doi.org/10.1002/mrm.1910310614

    Article  Google Scholar 

  17. Melbourne, A., et al.: Separating fetal and maternal placenta circulations using multiparametric MRI, January 2018. https://doi.org/10.1002/mrm.27406

  18. Menon, R.S., Allen, P.S.: Application of continuous relaxation time distributions to the fitting of data from model systems and excised tissue. Magn. Reson. Med. 20(2), 214–227 (1991). https://doi.org/10.1002/mrm.1910200205

    Article  Google Scholar 

  19. Molina-Romero, M., et al.: A diffusion model-free framework with echo time dependence for free-water elimination and brain tissue microstructure characterization. Magn. Reson. Med. 80(5), 2155–2172 (2018). https://doi.org/10.1002/mrm.27181

    Article  Google Scholar 

  20. Ning, L., Gagoski, B., Szczepankiewicz, F., Westin, C.F., Rathi, Y.: Joint RElaxation-diffusion imaging moments to probe neurite microstructure. IEEE Trans. Med. Imaging 39(3), 668–677 (2020). https://doi.org/10.1109/TMI.2019.2933982

    Article  Google Scholar 

  21. Pas, K., Komlosh, M.E., Perl, D.P., Basser, P.J., Benjamini, D.: Retaining information from multidimensional correlation MRI using a spectral regions of interest generator. Sci. Rep., 1–10 (2020). https://doi.org/10.1038/s41598-020-60092-5

  22. Ronen, I., Moeller, S., Ugurbil, K., Kim, D.S.: Analysis of the distribution of diffusion coefficients in cat brain at 9.4 T using the inverse Laplace transformation. Magn. Reson. Imaging 24(1), 61–68 (2006). https://doi.org/10.1016/j.mri.2005.10.023

  23. Slator, P.J., et al.: InSpect: INtegrated SPECTral component estimation and mapping for multi-contrast microstructural MRI. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 755–766. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_59

    Chapter  Google Scholar 

  24. Slator, P.J., et al.: Combined diffusion-relaxometry MRI to identify dysfunction in the human placenta. Magn. Reson. Med. (October), 1–22 (2019). https://doi.org/10.1002/mrm.27733

  25. Veraart, J., Novikov, D.S., Fieremans, E.: TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T2 relaxation times. NeuroImage 182, 360–369 (2018). https://doi.org/10.1016/j.neuroimage.2017.09.030

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paddy J. Slator .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3026 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Slator, P.J. et al. (2020). Data-Driven Multi-contrast Spectral Microstructure Imaging with InSpect. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12266. Springer, Cham. https://doi.org/10.1007/978-3-030-59725-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59725-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59724-5

  • Online ISBN: 978-3-030-59725-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics