Skip to main content

Neuronal Subcompartment Classification and Merge Error Correction

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12265))

Abstract

Recent advances in 3d electron microscopy are yielding ever larger reconstructions of brain tissue, encompassing thousands of individual neurons interconnected by millions of synapses. Interpreting reconstructions at this scale demands advances in the automated analysis of neuronal morphologies, for example by identifying morphological and functional subcompartments within neurons. We present a method that for the first time uses full 3d input (voxels) to automatically classify reconstructed neuron fragments as axon, dendrite, or somal subcompartments. Based on 3d convolutional neural networks, this method achieves a mean f1-score of 0.972, exceeding the previous state of the art of 0.955. The resulting predictions can support multiple analysis and proofreading applications. In particular, we leverage finely localized subcompartment predictions for automated detection and correction of merge errors in the volume reconstruction, successfully detecting 90.6% of inter-class merge errors with a false positive rate of only 2.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, Z., Lauritzen, J.S., Perlman, E., et al.: A complete electron microscopy volume of the brain of adult drosophila melanogaster. Cell 174, 730–743 (2018)

    Article  Google Scholar 

  2. Dorkenwald, S., Turner, N.L., Macrina, T., et al.: Binary and analog variation of synapses between cortical pyramidal neurons. bioRxiv 2019.12.29.890319 (2019)

    Google Scholar 

  3. Shan Xu, C., Januszewski, M., Lu, Z., et al.: A connectome of the adult drosophila central brain. bioRxiv 2020.01.21.911859 (2020)

    Google Scholar 

  4. Dorkenwald, S., Schubert, P.J., Killinger, M.F., et al.: Automated synaptic connectivity inference for volume electron microscopy. Nat. Methods 14, 435–442 (2017)

    Article  Google Scholar 

  5. Januszewski, M., Kornfeld, J., Li, P.H., et al.: High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15, 605–610 (2018)

    Article  Google Scholar 

  6. Li, P.H., Lindsey, L.F., Januszewski, M., et al.: Automated reconstruction of a serial-section EM drosophila brain with flood-filling networks and local realignment. bioRxiv 605634 (2019)

    Google Scholar 

  7. Buhmann, J., Sheridan, A., Gerhard, S., et al.: Automatic detection of synaptic partners in a whole-brain drosophila EM dataset. bioRxiv 2019.12.12.874172 (2019)

    Google Scholar 

  8. Dasgupta, S., Stevens, C.F., Navlakha, S.: A neural algorithm for a fundamental computing problem. Science 358, 793–796 (2017)

    Article  MathSciNet  Google Scholar 

  9. Kornfeld, J.M., Januszewski, M., Schubert, P.J., et al.: An anatomical substrate of credit assignment in reinforcement learning. bioRxiv 2020.02.18.954354 (2020)

    Google Scholar 

  10. Swanson, L.W., Lichtman, J.W.: From Cajal to connectome and beyond. Annu. Rev. Neurosci. 39, 197–216 (2016)

    Article  Google Scholar 

  11. Motta, A., Berning, M., Boergens, K.M., et al.: Dense connectomic reconstruction in layer 4 of the somatosensory cortex. Science 366(6469) (2019)

    Google Scholar 

  12. Schubert, P.J., Dorkenwald, S., Januszewski, M., et al.: Learning cellular morphology with neural networks. Nat. Commun. 10, 2736 (2019)

    Article  Google Scholar 

  13. Meirovitch, Y., Matveev, A., Saribekyan, H., et al.: A multi-pass approach to large-scale connectomics. arXiv [q-bio.QM] (2016)

    Google Scholar 

  14. Rolnick, D., Meirovitch, Y., Parag, T., et al.: Morphological error detection in 3D segmentations. arXiv [cs.CV] (2017)

    Google Scholar 

  15. Haehn, D., Kaynig, V., Tompkin, J.: Guided proofreading of automatic segmentations for connectomics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  16. Krasowski, N.E., Beier, T., et al.: Neuron segmentation with high-level biological priors. IEEE Trans. Med. Imaging 37(4), 829–839 (2017)

    Article  Google Scholar 

  17. Pape, C., Matskevych, A., et al.: Leveraging domain knowledge to improve microscopy image segmentation with lifted multicuts. Front. Comput. Sci. 1, 6 (2019)

    Article  Google Scholar 

  18. Hubbard, P.M., Berg, S., Zhao, T., et al.: Accelerated EM connectome reconstruction using 3D visualization and segmentation graphs. BioRxiv (2020)

    Google Scholar 

  19. Sato, M., Bitter, I., Bender, M.A., et al.: TEASAR: tree-structure extraction algorithm for accurate and robust skeletons. In: Proceedings the Eighth Pacific Conference on Computer Graphics and Applications, pp 281–449 (2000)

    Google Scholar 

  20. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Heckbert, P.S. (ed.) Graphics Gems IV, pp. 474–485. Academic Press Professional Inc., San Diego (1994)

    Chapter  Google Scholar 

  21. He, K., Zhang, X,. Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778 (2016)

    Google Scholar 

  22. Petilla Interneuron Nomenclature Group, Ascoli, G.A., Alonso-Nanclares, L., et al.: Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008)

    Google Scholar 

  23. Contreras, A., Hines, D.J., Hines, R.M.: Molecular specialization of GABAergic synapses on the soma and axon in cortical and hippocampal circuit function and dysfunction. Front. Mol. Neurosci. 12, 154 (2019)

    Article  Google Scholar 

  24. Jiang, X., Shen, S., Cadwell, C.R., et al.: Principles of connectivity among morphologically defined cell types in adult neocortex. Science 350, aac9462 (2015)

    Google Scholar 

  25. Gouwens, N.W., Sorensen, S.A., Baftizadeh, F., et al.: Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual GABAergic cortical neurons. bioRxiv 2020.02.03.932244 (2020)

    Google Scholar 

  26. Grünert, U., Martin, P.R.: Cell types and cell circuits in human and non-human primate retina. Progress in Retinal and Eye Research, 100844 (2020)

    Google Scholar 

  27. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv [cs.LG] (2016)

    Google Scholar 

  28. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. arXiv [cs.CV] (2016)

    Google Scholar 

  29. Riegler, G., Osman Ulusoy, A.: Octnet: learning deep 3d representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  30. Mescheder, L., Oechsle, M., Niemeyer, M.: Occupancy networks: learning 3d reconstruction in function space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  31. Graham, B., Engelcke, M., Van Der Maaten, L.: 3d semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9224–9232 (2018)

    Google Scholar 

Download references

Acknowledgments

We thank Philipp Schubert and Jörgen Kornfeld for sharing detailed CMN results and training data, as well as the EM volume. We thank Jeremy Maitin-Shepard and the anonymous reviewers for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 146 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Januszewski, M., Jain, V., Li, P.H. (2020). Neuronal Subcompartment Classification and Merge Error Correction. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics