Skip to main content

BEFD: Boundary Enhancement and Feature Denoising for Vessel Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12265))

Abstract

Blood vessel segmentation is crucial for many diagnostic and research applications. In recent years, CNN-based models have leaded to breakthroughs in the task of segmentation, however, such methods usually lose high-frequency information like object boundaries and subtle structures, which are vital to vessel segmentation. To tackle this issue, we propose Boundary Enhancement and Feature Denoising (BEFD) module to facilitate the network ability of extracting boundary information in semantic segmentation, which can be integrated into arbitrary encoder-decoder architecture in an end-to-end way. By introducing Sobel edge detector, the network is able to acquire additional edge prior, thus enhancing boundary in an unsupervised manner for medical image segmentation. In addition, we also utilize a denoising block to reduce the noise hidden in the low-level features. Experimental results on retinal vessel dataset and angiocarpy dataset demonstrate the superior performance of the new BEFD module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alom, M.Z., Yakopcic, C., Hasan, M., Taha, T.M., Asari, V.K.: Recurrent residual u-net for medical image segmentation. J. Med. Imaging 6(1), 014006 (2019)

    Article  Google Scholar 

  2. Archer, D.B.: Diabetic retinopathy: some cellular, molecular and therapeutic considerations. Eye 13(4), 497–523 (1999)

    Article  Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  4. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  5. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8(3), 263–269 (1989)

    Article  Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  7. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  8. Chutatape, O., Zheng, L., Krishnan, S.M.: Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No. 98CH36286), vol. 6, pp. 3144–3149. IEEE (1998)

    Google Scholar 

  9. Dizdaro, B., Ataer-Cansizoglu, E., Kalpathy-Cramer, J., Keck, K., Chiang, M.F., Erdogmus, D.: Level sets for retinal vasculature segmentation using seeds from ridges and edges from phase maps. In: 2012 IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6. IEEE (2012)

    Google Scholar 

  10. Hatamizadeh, A., Terzopoulos, D., Myronenko, A.: End-to-end boundary aware networks for medical image segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 187–194. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_22

    Chapter  Google Scholar 

  11. Hu, K., et al.: Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function. Neurocomputing 309, 179–191 (2018)

    Article  Google Scholar 

  12. Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: Dunet: a deformable network for retinal vessel segmentation. Knowl.-Based Syst. 178, 149–162 (2019)

    Article  Google Scholar 

  13. Kittler, J.: On the accuracy of the sobel edge detector. Image Vis. Comput. 1(1), 37–42 (1983)

    Article  Google Scholar 

  14. Li, L., Verma, M., Nakashima, Y., Nagahara, H., Kawasaki, R.: Iternet: retinal image segmentation utilizing structural redundancy in vessel networks. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 3656–3665 (2020)

    Google Scholar 

  15. Lyu, J., Cheng, P., Tang, X.: Fundus image based retinal vessel segmentation utilizing a fast and accurate fully convolutional network. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2019. LNCS, vol. 11855, pp. 112–120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32956-3_14

    Chapter  Google Scholar 

  16. Mou, L., Chen, L., Cheng, J., Gu, Z., Zhao, Y., Liu, J.: Dense dilated network with probability regularized walk for vessel detection. IEEE Trans. Med. Imaging 39, 1392–1403 (2019)

    Article  Google Scholar 

  17. Qin, X.: Transfer learning with edge attention for prostate MRI segmentation. arXiv preprint arXiv:1912.09847 (2019)

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Sun, Y., Zhang, X., Zhao, X., Xin, Q.: Extracting building boundaries from high resolution optical images and lidar data by integrating the convolutional neural network and the active contour model. Remote Sens. 10(9), 1459 (2018)

    Article  Google Scholar 

  20. Wang, B., Qiu, S., He, H.: Dual encoding u-net for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10

    Chapter  Google Scholar 

  21. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  22. Wu, Y., et al.: Vessel-net: retinal vessel segmentation under multi-path supervision. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 264–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_30

    Chapter  Google Scholar 

  23. Xie, C., Wu, Y., van der Maaten, L., Yuille, A.L., He, K.: Feature denoising for improving adversarial robustness. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 501–509 (2019)

    Google Scholar 

  24. Zhang, Y., Chung, A.C.S.: Deep supervision with additional labels for retinal vessel segmentation task. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 83–91. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_10

    Chapter  Google Scholar 

  25. Zhen, M., Wang, J., Zhou, L., Fang, T., Quan, L.: Learning fully dense neural networks for image semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9283–9290 (2019)

    Google Scholar 

  26. Zhou, Y., Chen, Z., Shen, H., Peng, P., Zeng, Z., Zheng, X.: A symmetric equilibrium generative adversarial network with attention refine block for retinal vessel segmentation. arXiv preprint arXiv:1909.11936 (2019)

  27. Zhu, Q., Du, B., Yan, P.: Boundary-weighted domain adaptive neural network for prostate MR image segmentation. IEEE Trans. Med. Imaging 39, 168–178 (2019)

    Google Scholar 

  28. Zhuang, J.: Laddernet: Multi-path networks based on u-net for medical image segmentation. arXiv preprint arXiv:1810.07810 (2018)

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (NSFC) under Grants 81801778, 71704024, 11831002; National Key R&D Program of China (No. 2018YFC0910700); Beijing Natural Science Foundation (Z180001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhang or Quanzheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, M., Yu, F., Zhao, J., Zhang, L., Li, Q. (2020). BEFD: Boundary Enhancement and Feature Denoising for Vessel Segmentation. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12265. Springer, Cham. https://doi.org/10.1007/978-3-030-59722-1_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59722-1_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59721-4

  • Online ISBN: 978-3-030-59722-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics