Skip to main content

Generation of Annotated Brain Tumor MRIs with Tumor-induced Tissue Deformations for Training and Assessment of Neural Networks

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12264))

Abstract

Machine learning methods heavily rely on the availability of large annotated datasets of a certain domain for training. However, freely available datasets of patients with pathologies rarely contain annotations of normal structures, thus cannot be used as ground truth for various image processing methods. To overcome this issue, we propose a topology preserving unpaired domain translation method, including an explicit pathology integration to generate annotated ground truth data of pathological domains. Moreover, we integrate a novel inverse probabilistic approach to generate deformations of the surrounding caused by pathological tissue. Our experiments show the necessity for annotated pathological data for algorithm evaluation. Furthermore, when training neural networks on healthy data and testing on real pathological images, the results are strongly impaired. By generating training data with pathologies using the proposed method, the performance of segmentation and registration methods increases significantly. The best results are achieved by also integrating pathology-induced tissue deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For more details, see our code at: https://github.com/hristina-uzunova/TumorMassEffect.

  2. 2.

    http://brain-development.org/.

References

  1. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-Euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113

    Chapter  Google Scholar 

  2. Astaraki, M., Toma-Dasu, I., Smedby, Ö., Wang, C.: Normal appearance autoencoder for lung cancer detection and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 249–256. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_28

    Chapter  Google Scholar 

  3. Cohen, J.P., Luck, M., Honari, S.: Distribution matching losses can hallucinate features in medical image translation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 529–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_60

    Chapter  Google Scholar 

  4. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  5. Ehrhardt, J., Schmidt-Richberg, A., Werner, R., Handels, H.: Variational registration: a flexible open-source ITK toolbox for nonrigid image registration. In: Handels, H., Deserno, T.M., Meinzer, H.-P., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2015. I, pp. 209–214. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46224-9_37

    Chapter  Google Scholar 

  6. Ezhov, I., et al.: Neural parameters estimation for brain tumor growth modeling. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 787–795. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_87

    Chapter  Google Scholar 

  7. Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.: Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 54(1), 313–327 (2011)

    Article  Google Scholar 

  8. Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using GAN for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 289–293 (2018)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27, pp. 2672–2680 (2014)

    Google Scholar 

  10. Hammers, A., et al.: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 19(4), 224–247 (2003)

    Article  Google Scholar 

  11. Hogea, C., Davatzikos, C., Biros, G.: Modeling glioma growth and mass effect in 3D MR images of the brain. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4791, pp. 642–650. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75757-3_78

    Chapter  Google Scholar 

  12. Kohl, S., et al.: A Probabilistic U-Net for segmentation of ambiguous images. In: Advances in Neural Information Processing Systems 31, pp. 6965–6975 (2018)

    Google Scholar 

  13. Kwon, D., Niethammer, M., Akbari, H., Bilello, M., Davatzikos, C., Pohl, K.M.: PORTR: pre-operative and post-recurrence brain tumor registration. IEEE Trans. Med. Imaging 33(3), 651–667 (2014)

    Article  Google Scholar 

  14. Liu, J., Shen, C., Liu, T., Aguilera, N., Tam, J.: Active appearance model induced generative adversarial network for controlled data augmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 201–208. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_23

    Chapter  Google Scholar 

  15. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  16. Pfarrkirchner, B., Gsaxner, C., Schmalsteig, D., Egger, J., Lindner, L.: TuMore: generation of synthetic brain tumor MRI data for deep learning based segmentation approaches. In: Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications, p. 63 (2018)

    Google Scholar 

  17. Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31

    Chapter  Google Scholar 

  18. Shattuck, D.W., et al.: Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage 39(3), 1064–1080 (2008)

    Article  Google Scholar 

  19. Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  20. Uzunova, H., Ehrhardt, J., Jacob, F., Frydrychowicz, A., Handels, H.: Multi-scale GANs for memory-efficient generation of high resolution medical images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 112–120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_13

    Chapter  Google Scholar 

  21. Uzunova, H., Wilms, M., Handels, H., Ehrhardt, J.: Training CNNs for image registration from few samples with model-based data augmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 223–231. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_26

    Chapter  Google Scholar 

  22. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  23. Wu, E., Wu, K., Cox, D., Lotter, W.: Conditional infilling GANs for data augmentation in mammogram classification. In: Image Analysis for Moving Organ, Breast, and Thoracic Images, pp. 98–106 (2018)

    Google Scholar 

  24. Xing, Y., et al.: Adversarial pulmonary pathology translation for pairwise chest X-ray data augmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 757–765. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_84

    Chapter  Google Scholar 

  25. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration – a deep learning approach. NeuroImage 158, 378–396 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hristina Uzunova .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 291 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uzunova, H., Ehrhardt, J., Handels, H. (2020). Generation of Annotated Brain Tumor MRIs with Tumor-induced Tissue Deformations for Training and Assessment of Neural Networks. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics