Skip to main content

Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Semantic tool segmentation in surgical videos is important for surgical scene understanding and computer-assisted interventions as well as for the development of robotic automation. The problem is challenging because different illumination conditions, bleeding, smoke and occlusions can reduce algorithm robustness. At present labelled data for training deep learning models is still lacking for semantic surgical instrument segmentation and in this paper we show that it may be possible to use robot kinematic data coupled with laparoscopic images to alleviate the labelling problem. We propose a new deep learning based model for parallel processing of both laparoscopic and simulation images for robust segmentation of surgical tools. Due to the lack of laparoscopic frames annotated with both segmentation ground truth and kinematic information a new custom dataset was generated using the da Vinci Research Kit (dVRK) and is made available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.ucl.ac.uk/interventional-surgical-sciences/davinci-segmentation-kinematic.

  2. 2.

    https://www.intuitive.com/.

  3. 3.

    https://uk.mathworks.com/products/robotics.html.

  4. 4.

    https://www.coppeliarobotics.com/.

  5. 5.

    https://nullprogram.com/blog/2007/11/20/.

  6. 6.

    https://www.tensorflow.org/guide/keras.

References

  1. Allan, M., Ourselin, S., Hawkes, D.J., Kelly, J.D., Stoyanov, D.: 3-D pose estimation of articulated instruments in robotic minimally invasive surgery. IEEE Trans. Med. Imaging 37(5), 1204–1213 (2018)

    Article  Google Scholar 

  2. Bouget, D., Allan, M., Stoyanov, D., Jannin, P.: Vision-based and marker-less surgical tool detection and tracking: a review of the literature. Med. Image Anal. 35, 633–654 (2017)

    Article  Google Scholar 

  3. Chuang, Y.Y., Curless, B., Salesin, D.H., Szeliski, R.: A bayesian approach to digital matting. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 2, pp. II-II. IEEE (2001)

    Google Scholar 

  4. da Costa Rocha, C., Padoy, N., Rosa, B.: Self-supervised surgical tool segmentation using kinematic information. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 8720–8726. IEEE (2019)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Du, X., Kurmann, T., Chang, P.L., Allan, M., Ourselin, S., Sznitman, R., Kelly, J.D., Stoyanov, D.: Articulated multi-instrument 2-D pose estimation using fully convolutional networks. IEEE Trans. Med. Imaging 37(5), 1276–1287 (2018)

    Article  Google Scholar 

  7. Fontanelli, G.A., Selvaggio, M., Ferro, M., Ficuciello, F., Vendittelli, M., Siciliano, B.: A v-rep simulator for the da vinci research kit robotic platform. In: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 1056–1061. IEEE (2018)

    Google Scholar 

  8. García-Peraza-Herrera, L.C., et al.: Toolnet: holistically-nested real-time segmentation of robotic surgical tools. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5717–5722. IEEE (2017)

    Google Scholar 

  9. Guo, Z., Li, X., Huang, H., Guo, N., Li, Q.: Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans. Radiat. Plasma Med. Sci. 3(2), 162–169 (2019)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Iglovikov, V., Shvets, A.: Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv preprint (2018). arXiv:1801.05746

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint (2014). arXiv:1412.6980

  13. Kurmann, T., et al.: Simultaneous recognition and pose estimation of instruments in minimally invasive surgery. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 505–513. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_57

    Chapter  Google Scholar 

  14. Laina, I., Rieke, N., Rupprecht, C., Vizcaíno, J.P., Eslami, A., Tombari, F., Navab, N.: Concurrent segmentation and localization for tracking of surgical instruments. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 664–672. Springer (2017)

    Google Scholar 

  15. Moccia, S., et al.: Uncertainty-aware organ classification for surgical data science applications in laparoscopy. IEEE Trans. Biomed. Eng. 65(11), 2649–2659 (2018)

    Article  Google Scholar 

  16. Mohammed, A., Yildirim, S., Farup, I., Pedersen, M., Hovde, Ø.: Streoscennet: surgical stereo robotic scene segmentation. In: Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 10951, p. 109510P. International Society for Optics and Photonics (2019)

    Google Scholar 

  17. Ni, Z.L., Bian, G.B., Xie, X.L., Hou, Z.G., Zhou, X.H., Zhou, Y.J.: Rasnet: segmentation for tracking surgical instruments in surgical videos using refined attention segmentation network. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5735–5738. IEEE (2019)

    Google Scholar 

  18. Palep, J.H.: Robotic assisted minimally invasive surgery. J. Minimal Access Surg. 5(1), 1 (2009)

    Article  Google Scholar 

  19. Qin, F., Li, Y., Su, Y.H., Xu, D., Hannaford, B.: Surgical instrument segmentation for endoscopic vision with data fusion of rediction and kinematic pose. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 9821–9827. IEEE (2019)

    Google Scholar 

  20. Rohmer, E., Singh, S.P., Freese, M.: V-rep: a versatile and scalable robot simulation framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1321–1326. IEEE (2013)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Su, Y.H., Huang, K., Hannaford, B.: Real-time vision-based surgical tool segmentation with robot kinematics prior. In: 2018 International Symposium on Medical Robotics (ISMR), pp. 1–6. IEEE (2018)

    Google Scholar 

  23. Tao, L., Zappella, L., Hager, G.D., Vidal, R.: Surgical gesture segmentation and recognition. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 339–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_43

    Chapter  Google Scholar 

Download references

Acknowledgements

The work was supported by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) [203145Z/16/Z]; Engineering and Physical Sciences Research Council (EPSRC) [EP/P027938/1, EP/R004080 /1, EP/P012841/1]; The Royal Academy of Engineering Chair in Emerging Technologies Scheme; and Horizon 2020 FET (GA 863146). We thank Intuitive Surgical Inc and the dVRK community for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Colleoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Colleoni, E., Edwards, P., Stoyanov, D. (2020). Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics