Skip to main content

Ultra2Speech - A Deep Learning Framework for Formant Frequency Estimation and Tracking from Ultrasound Tongue Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12263))

Abstract

Thousands of individuals need surgical removal of their larynx due to critical diseases every year and therefore, require an alternative form of communication to articulate speech sounds after the loss of their voice box. This work addresses the articulatory-to-acoustic mapping problem based on ultrasound (US) tongue images for the development of a silent-speech interface (SSI) that can provide them with an assistance in their daily interactions. Our approach targets automatically extracting tongue movement information by selecting an optimal feature set from US images and mapping these features to the acoustic space. We use a novel deep learning architecture to map US tongue images from the US probe placed beneath a subject’s chin to formants that we call, Ultrasound2Formant (U2F) Net. It uses hybrid spatio-temporal 3D convolutions followed by feature shuffling, for the estimation and tracking of vowel formants from US images. The formant values are then utilized to synthesize continuous time-varying vowel trajectories, via Klatt Synthesizer. Our best model achieves R-squared (\(R^2\)) measure of 99.96% for the regression task. Our network lays the foundation for an SSI as it successfully tracks the tongue contour automatically as an internal representation without any explicit annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  2. Csapó, T.G., Grósz, T., Gosztolya, G., Tóth, L., Markó, A.: DNN-based ultrasound-to-speech conversion for a silent speech interface. Proc. Interspeech 2017, 3672–3676 (2017)

    Article  Google Scholar 

  3. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8609–8613. IEEE (2013)

    Google Scholar 

  4. Denby, B., Oussar, Y., Dreyfus, G., Stone, M.: Prospects for a silent speech interface using ultrasound imaging. In: Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing, vol. 1, p. I. IEEE (2006)

    Google Scholar 

  5. Denby, B., Schultz, T., Honda, K., Hueber, T., Gilbert, J.M., Brumberg, J.S.: Silent speech interfaces. Speech Commun. 52(4), 270–287 (2010)

    Article  Google Scholar 

  6. Denby, B., Stone, M.: Speech synthesis from real time ultrasound images of the tongue. In: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. I–685. IEEE (2004)

    Google Scholar 

  7. Gilbert, M., et al.: Restoring speech following total removal of the larynx by a learned transformation from sensor data to acoustics. J. Acoust. Soc. Am. 141(3), EL307–EL313 (2017)

    Article  Google Scholar 

  8. Gosztolya, G., Pintér, Á., Tóth, L., Grósz, T., Markó, A., Csapó, T.G.: Autoencoder-based articulatory-to-acoustic mapping for ultrasound silent speech interfaces. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2019)

    Google Scholar 

  9. Hueber, T., et al.: Eigentongue feature extraction for an ultrasound-based silent speech interface. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP 2007, vol. 1, pp. I–1245. IEEE (2007)

    Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  11. Juanpere, E.M., Csapó, T.G.: Ultrasound-based silent speech interface using convolutional and recurrent neural networks. Acta Acust. United Acust. 105(4), 587–590 (2019)

    Article  Google Scholar 

  12. Klatt, D.H.: Software for a cascade/parallel formant synthesizer. J. Acoust. Soc. Am. 67(3), 971–995 (1980)

    Article  Google Scholar 

  13. Luo, C., Yuille, A.L.: Grouped spatial-temporal aggregation for efficient action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5512–5521 (2019)

    Google Scholar 

  14. Mandal, M., Kumar, L.K., Saran, M.S., et al.: MotionRec: a unified deep framework for moving object recognition. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 2734–2743 (2020)

    Google Scholar 

  15. O’Shaughnessy, D.: Formant estimation and tracking. In: Benesty, J., Sondhi, M.M., Huang, Y.A. (eds.) Springer Handbook of Speech Processing. SH, pp. 213–228. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-49127-9_11

    Chapter  Google Scholar 

  16. Saha, P., Srungarapu, P., Fels, S.: Towards automatic speech identification from vocal tract shape dynamics in real-time MRI. Proc. Interspeech 2018, 1249–1253 (2018)

    Article  Google Scholar 

  17. Stavness, I., Lloyd, J.E., Fels, S.: Automatic prediction of tongue muscle activations using a finite element model. J. Biomech. 45(16), 2841–2848 (2012)

    Article  Google Scholar 

  18. Tóth, L., Gosztolya, G., Grósz, T., Markó, A., Csapó, T.G.: Multi-task learning of speech recognition and speech synthesis parameters for ultrasound-based silent speech interfaces. In: Interspeech, pp. 3172–3176 (2018)

    Google Scholar 

  19. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  20. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada and Canadian Institutes for Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramit Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saha, P., Liu, Y., Gick, B., Fels, S. (2020). Ultra2Speech - A Deep Learning Framework for Formant Frequency Estimation and Tracking from Ultrasound Tongue Images. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics