Skip to main content

Interacting with Medical Volume Data in Projective Augmented Reality

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Medical volume data is usually explored on monoscopic monitors. Displaying this data in three-dimensional space facilitates the development of mental maps and the identification of anatomical structures and their spatial relations. Using augmented reality (AR) may further enhance these effects by spatially aligning the volume data with the patient. However, conventional interaction methods, e.g. mouse and keyboard, may not be applicable in this environment. Appropriate interaction techniques are needed to naturally and intuitively manipulate the image data. To this end, a user study comparing four gestural interaction techniques with respect to both clipping and windowing tasks was conducted. Image data was directly displayed on a phantom using stereoscopic projective AR and direct volume visualization. Participants were able to complete both tasks with all interaction techniques with respectively similar clipping accuracy and windowing efficiency. However, results suggest advantages of gestures based on motion-sensitive devices in terms of reduced task completion time and less subjective workload. This work presents an important first step towards a surgical AR visualization system enabling intuitive exploration of volume data. Yet, more research is required to assess the interaction techniques’ applicability for intraoperative use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D’Agostino, J., Diana, M., Vix, M., Soler, L., Marescaux, J.: Three-dimensional virtual neck exploration before parathyroidectomy. New Engl. J. Med. 367(11), 1072–1073 (2012)

    Article  Google Scholar 

  2. Egger, J., et al.: HTC Vive MeVisLab integration via OpenVR for medical applications. PloS One 12(3), e0173972 (2017)

    Article  Google Scholar 

  3. Gallo, L.: A study on the degrees of freedom in touchless interaction. In: SIGGRAPH Asia 2013 Technical Briefs, p. 28. ACM (2013)

    Google Scholar 

  4. Gallo, L., De Pietro, G., Marra, I.: 3D interaction with volumetric medical data: experiencing the wiimote. In: Proceedings of the 1st International Conference on Ambient Media and Systems. Ambi-Sys ’08, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, BEL (2008)

    Google Scholar 

  5. Gierwiało, R., Witkowski, M., Kosieradzki, M., Lisik, W., Groszkowski, Ł., Sitnik, R.: Medical augmented-reality visualizer for surgical training and education in medicine. Appl. Sci. 9(13), 2732 (2019)

    Article  Google Scholar 

  6. Goth, G.: Brave NUI world. Commun. ACM 54(12), 14–16 (2011)

    Article  Google Scholar 

  7. Hatscher, B., Luz, M., Hansen, C.: Foot interaction concepts to support radiological interventions. i-com 17(1), 3–13 (2018)

    Google Scholar 

  8. Hettig, J., Mewes, A., Riabikin, O., Skalej, M., Preim, B., Hansen, C.: Exploration of 3D medical image data for interventional radiology using myoelectric gesture control. In: Proceedings of the Eurographics Workshop on Visual Computing for Biology and Medicine, pp. 177–185. Eurographics Association (2015)

    Google Scholar 

  9. Hettig, J., Saalfeld, P., Luz, M., Becker, M., Skalej, M., Hansen, C.: Comparison of gesture and conventional interaction techniques for interventional neuroradiology. Int. J. Comput. Assist. Radiol. Surg. 12(9), 1643–1653 (2017)

    Article  Google Scholar 

  10. Jalaliniya, S., Smith, J., Sousa, M., Büthe, L., Pederson, T.: Touch-less interaction with medical images using hand & foot gestures. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, pp. 1265–1274 (2013)

    Google Scholar 

  11. Jankowski, J., Hachet, M.: A survey of interaction techniques for interactive 3D environments. In: Eurographics (2013)

    Google Scholar 

  12. Kirmizibayrak, C., Radeva, N., Wakid, M., Philbeck, J., Sibert, J., Hahn, J.: Evaluation of gesture based interfaces for medical volume visualization tasks. In: Proceedings of the 10th International Conference on Virtual Reality Continuum and its Applications in Industry, pp. 69–74. ACM (2011)

    Google Scholar 

  13. Mentis, H.M., et al.: Voice or gesture in the operating room. In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pp. 773–780. ACM (2015)

    Google Scholar 

  14. Mewes, A., Hensen, B., Wacker, F., Hansen, C.: Touchless interaction with software in interventional radiology and surgery: a systematic literature review. Int. J. Comput. Assist. Radiol. Surg. 12(2), 291–305 (2017)

    Article  Google Scholar 

  15. Mewes, A., Saalfeld, P., Riabikin, O., Skalej, M., Hansen, C.: A gesture-controlled projection display for CT-guided interventions. Int. J. Comput. Assist. Radiol. Surg. 11(1), 157–164 (2016)

    Article  Google Scholar 

  16. Nicolau, S., Soler, L., Mutter, D., Marescaux, J.: Augmented reality in laparoscopic surgical oncology. Surg. Oncol. 20(3), 189–201 (2011)

    Article  Google Scholar 

  17. de Oliveira, M.E., Debarba, H.G., Lädermann, A., Chagué, S., Charbonnier, C.: A hand-eye calibration method for augmented reality applied to computer-assisted orthopedic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 15, e1969 (2019). https://doi.org/10.1002/rcs.1969

    Article  Google Scholar 

  18. Pfeiffer, M., et al.: IMHOTEP: virtual reality framework for surgical applications. Int. J. Comput. Assist. Radiol. Surg. 13(5), 741–748 (2018)

    Google Scholar 

  19. Silén, C., Wirell, S., Kvist, J., Nylander, E., Smedby, Ö.: Advanced 3D visualization in student-centred medical education. Med. Teach. 30(5), e115–e124 (2008)

    Article  Google Scholar 

  20. Silva, É.S., Rodrigues, M.A.F.: Design and evaluation of a gesture-controlled system for interactive manipulation of medical images and 3D models. SBC J. Interact. Syst. 5(3), 53–65 (2014)

    MathSciNet  Google Scholar 

  21. Sugimoto, M., et al.: Image overlay navigation by markerless surface registration in gastrointestinal, hepatobiliary and pancreatic surgery. J. Hep.-Biliary-Pancreat. Sci. 17(5), 629–636 (2010)

    Article  Google Scholar 

  22. Thomas, R.G., William John, N., Delieu, J.M.: Augmented reality for anatomical education. J. Vis. Commun. Med. 33(1), 6–15 (2010)

    Article  Google Scholar 

  23. Velloso, E., Schmidt, D., Alexander, J., Gellersen, H., Bulling, A.: The feet in human-computer interaction: a survey of foot-based interaction. ACM Comput. Surv. (CSUR) 48(2), 21 (2015)

    Article  Google Scholar 

  24. Wen, R., Nguyen, B.P., Chng, C.B., Chui, C.K.: In situ spatial AR surgical planning using projector-kinect system. In: Proceedings of the Fourth Symposium on Information and Communication Technology, pp. 164–171 (2013)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the German Research Foundation (HA 7819/1-2 & LA 3855/1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heinrich, F., Bornemann, K., Lawonn, K., Hansen, C. (2020). Interacting with Medical Volume Data in Projective Augmented Reality. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics