Skip to main content

Longitudinal Image Registration with Temporal-Order and Subject-Specificity Discrimination

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Morphological analysis of longitudinal MR images plays a key role in monitoring disease progression for prostate cancer patients, who are placed under an active surveillance program. In this paper, we describe a learning-based image registration algorithm to quantify changes on regions of interest between a pair of images from the same patient, acquired at two different time points. Combining intensity-based similarity and gland segmentation as weak supervision, the population-data-trained registration networks significantly lowered the target registration errors (TREs) on holdout patient data, compared with those before registration and those from an iterative registration algorithm. Furthermore, this work provides a quantitative analysis on several longitudinal-data-sampling strategies and, in turn, we propose a novel regularisation method based on maximum mean discrepancy, between differently-sampled training image pairs. Based on 216 3D MR images from 86 patients, we report a mean TRE of 5.6 mm and show statistically significant differences between the different training data sampling strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Erhan, D.: Domain separation networks. In: Advances in Neural Information Processing Systems, pp. 343–351 (2016)

    Google Scholar 

  4. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. J. Mach. Learn. Res. 13(Mar), 723–773 (2012)

    Google Scholar 

  5. Hu, S., Wei, L., Gao, Y., Guo, Y., Wu, G., Shen, D.: Learning-based deformable image registration for infant MR images in the first year of life. Med. Phys. 44(1), 158–170 (2017)

    Article  Google Scholar 

  6. Hu, Y., et al.: Weakly-supervised convolutional neural networks for multimodal image registration. Med. image anal. 49, 1–13 (2018)

    Article  Google Scholar 

  7. Kim, C.K., Park, B.K., Lee, H.M., Kim, S.S., Kim, E.: MRI techniques for prediction of local tumor progression after high-intensity focused ultrasonic ablation of prostate cancer. Am. J. Roentgenol. 190(5), 1180–1186 (2008)

    Article  Google Scholar 

  8. Liao, S., et al.: A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences. NeuroImage 59(2), 1275–1289 (2012)

    Article  Google Scholar 

  9. Modat, M., et al.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)

    Article  Google Scholar 

  10. Moore, C.M., et al.: Reporting magnetic resonance imaging in men on active surveillance for prostate cancer: the precise recommendations-a report of a european school of oncology task force. Eur. Urol. 71(4), 648–655 (2017)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  13. Schwartz, E., Jakab, A., Kasprian, G., Zöllei, L., Langs, G.: A locally linear method for enforcing temporal smoothness in serial image registration. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M., Pennec, X. (eds.) STIA 2014. LNCS, vol. 8682, pp. 13–24. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14905-9_2

    Chapter  Google Scholar 

  14. Simpson, I.J.A., Woolrich, M.W., Groves, A.R., Schnabel, J.A.: Longitudinal brain MRI analysis with uncertain registration. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 647–654. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_79

    Chapter  Google Scholar 

  15. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  16. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  17. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

Download references

Acknowledgment

This work is supported by the Wellcome/EPSRC Centre for Interventional and Surgical Sciences (203145Z/16/Z), Centre for Medical Engineering (203148/Z/16/Z; NS/A000049/1), the EPSRC-funded UCL Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health) (EP/S021930/1) and the Department of Health’s NIHR-fundedBiomedical Research Centre at UCLH. Francesco Giganti is funded by the UCL Graduate Research Scholarship and the Brahm Ph.D. scholarship in memory of Chris Adams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianye Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Q. et al. (2020). Longitudinal Image Registration with Temporal-Order and Subject-Specificity Discrimination. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics