Skip to main content

Reconstructing Sinus Anatomy from Endoscopic Video – Towards a Radiation-Free Approach for Quantitative Longitudinal Assessment

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Reconstructing accurate 3D surface models of sinus anatomy directly from an endoscopic video is a promising avenue for cross-sectional and longitudinal analysis to better understand the relationship between sinus anatomy and surgical outcomes. We present a patient-specific, learning-based method for 3D reconstruction of sinus surface anatomy directly and only from endoscopic videos. We demonstrate the effectiveness and accuracy of our method on in and ex vivo data where we compare to sparse reconstructions from Structure from Motion, dense reconstruction from COLMAP, and ground truth anatomy from CT. Our textured reconstructions are watertight and enable measurement of clinically relevant parameters in good agreement with CT. The source code is available at https://github.com/lppllppl920/DenseReconstruction-Pytorch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bezerra, T.F.P., et al.: Quality of life assessment septoplasty in patients with nasal obstruction. Braz. J. Otorhinolaryngol. 78(3), 57–62 (2012)

    Article  Google Scholar 

  2. Hytönen, M., Blomgren, K., Lilja, M., Mäkitie, A.: How we do it: septoplasties under local anaesthetic are suitable for short stay surgery; the clinical outcomes. Clin. Otolaryngol.: Official J. ENT-UK; Official J. Netherlands Soc. Oto-Rhino-Laryngol. Cervico-Facial Surg. 31(1), 64–68 (2006)

    Google Scholar 

  3. Hytönen, M.L., Lilja, M., Mäkitie, A.A., Sintonen, H., Roine, R.P.: Does septoplasty enhance the quality of life in patients? Eur. Arch. Otorhinolaryngol. 269(12), 2497–2503 (2012)

    Article  Google Scholar 

  4. Schönberger, J.L., Frahm, J.: Structure-from-motion revisited. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104–4113, June 2016

    Google Scholar 

  5. Phan, T., Trinh, D., Lamarque, D., Wolf, D., Daul, C.: Dense optical flow for the reconstruction of weakly textured and structured surfaces: application to endoscopy. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 310–314, September 2019

    Google Scholar 

  6. Widya, A.R., Monno, Y., Okutomi, M., Suzuki, S., Gotoda, T., Miki, K.: Whole stomach 3D reconstruction and frame localization from monocular endoscope video. IEEE J. Transl. Eng. Health Med. 7, 1–10 (2019)

    Article  Google Scholar 

  7. Qiu, L., Ren, H.: Endoscope navigation and 3D reconstruction of oral cavity by visual slam with mitigated data scarcity. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 2278–22787, June 2018

    Google Scholar 

  8. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, vol. 7 (2006)

    Google Scholar 

  9. Turan, M., Pilavci, Y.Y., Ganiyusufoglu, I., Araujo, H., Konukoglu, E., Sitti, M.: Sparse-then-dense alignment-based 3D map reconstruction method for endoscopic capsule robots. Mach. Vis. Appl. 29(2), 345–359 (2018)

    Article  Google Scholar 

  10. Tokgozoglu, H.N., Meisner, E.M., Kazhdan, M., Hager, G.D.: Color-based hybrid reconstruction for endoscopy. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 8–15, June 2012

    Google Scholar 

  11. Karargyris, A., Bourbakis, N.: Three-dimensional reconstruction of the digestive wall in capsule endoscopy videos using elastic video interpolation. IEEE Trans. Med. Imaging 30(4), 957–971 (2011)

    Article  Google Scholar 

  12. Zhao, Q., Price, T., Pizer, S., Niethammer, M., Alterovitz, R., Rosenman, J.: The endoscopogram: a 3D model reconstructed from endoscopic video frames. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 439–447. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46720-7_51

    Chapter  Google Scholar 

  13. Lamarca, J., Parashar, S., Bartoli, A., Montiel, J.: DefSLAM: tracking and mapping of deforming scenes from monocular sequences. arXiv preprint arXiv:1908.08918 (2019)

  14. Song, J., Wang, J., Zhao, L., Huang, S., Dissanayake, G.: MIS-SLAM: real-time large-scale dense deformable slam system in minimal invasive surgery based on heterogeneous computing. IEEE Robot. Autom. Lett. 3(4), 4068–4075 (2018)

    Article  Google Scholar 

  15. Ma, R., Wang, R., Pizer, S., Rosenman, J., McGill, S.K., Frahm, J.-M.: Real-time 3D reconstruction of colonoscopic surfaces for determining missing regions. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 573–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_64

    Chapter  Google Scholar 

  16. Chen, R.J., Bobrow, T.L., Athey, T., Mahmood, F., Durr, N.J.: Slam endoscopy enhanced by adversarial depth prediction. arXiv preprint arXiv:1907.00283 (2019)

  17. Liu, X., et al.: Dense depth estimation in monocular endoscopy with self-supervised learning methods. IEEE Trans. Med. Imaging 39, 1438–1447 (2019)

    Article  Google Scholar 

  18. Liu, X., et al.: Extremely dense point correspondences using a learned feature descriptor. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4847–4856 (2020)

    Google Scholar 

  19. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR (2017)

    Google Scholar 

  20. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 303–312 (1996)

    Google Scholar 

  21. Zach, C., Pock, T., Bischof, H.: A globally optimal algorithm for robust TV-L1 range image integration. In: ICCV. IEEE, pp. 1–8 (2007)

    Google Scholar 

  22. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput. Graph. 21, 163–169 (1987)

    Article  Google Scholar 

  23. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  24. Billings, S., Taylor, R.: Generalized iterative most likely oriented-point (G-IMLOP) registration. IJCARS 10(8), 1213–1226 (2015)

    Google Scholar 

  25. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Vis. Comput. Graph. 5(4), 349–359 (1999)

    Article  Google Scholar 

  26. Cazals, F., Giesen, J.: Delaunay triangulation based surface reconstruction. In: Boissonnat, J.D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces, pp. 231–276. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-33259-6_6

    Chapter  Google Scholar 

  27. Wang, R., Pizer, S.M., Frahm, J.M.: Recurrent neural network for (un-) supervised learning of monocular video visual odometry and depth. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5555–5564 (2019)

    Google Scholar 

  28. Khan, I.: Robust sparse and dense nonrigid structure from motion. IEEE Trans. Multimed. 20(4), 841–850 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingtong Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 135 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X. et al. (2020). Reconstructing Sinus Anatomy from Endoscopic Video – Towards a Radiation-Free Approach for Quantitative Longitudinal Assessment. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59716-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59715-3

  • Online ISBN: 978-3-030-59716-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics