Skip to main content

Introduction into Sampling Theory, Applying Partial Order Concepts

  • Chapter
  • First Online:
Measuring and Understanding Complex Phenomena

Abstract

In sampling theory, we are looking for efficient sampling designs to estimate the population parameters. Efficiency is mostly defined based on high precision and low cost. Such sampling designs are more achievable when auxiliary variables are available. Selecting many sampling units and rank them based on auxiliary variables before selecting the final sample, leads to a post-stratified population that provides a proper situation to select a good sample to estimate the population parameters more precisely but more costly relative to simple random sampling. Two challenges are in the way of using such designs; first, reducing costs of the designs, and second, ranking the units when there is more than one variable of interest for each unit. Here, in the way of overcoming these challenges we make a connection between sampling theory and partial order set theory. Based on some simulations we will show that applying partial order set theory in sampling designs, leads to a new more efficient design that increases the precision of estimating all the parameters simultaneously in the case of multivariate analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Saleh, M., & Zheng, G. (2002). Estimation of bivariate characteristics using ranked set sampling. The Australian & New Zealand Journal of Statistics, 44, 221–232.

    Article  Google Scholar 

  • Arnold, B. C., Castillo, E., & Sarabia, J. M. (2009). On multivariate order statistics. Application to ranked set sampling. Computational Statistics and Data Analysis, 53(12), 4555–4569.

    Article  Google Scholar 

  • Bouza-Herrera, C., & Al-Omari, A. I. F. (2018). Ranked set sampling, 65 years improving the accuracy in data gathering. London/San Diego: Elsevier/Academic.

    Google Scholar 

  • Bruggemann, R., & Carlsen, L. (2011). An improved estimation of averaged ranks of partial orders. MATCH Communications in Mathematical and in Computer Chemistry, 65, 383–414.

    Google Scholar 

  • Bruggemann, R., Sorensen, P. B., Lerche, D., & Carlsen, L. (2004). Estimation of averaged ranks by a local partial order model. Journal of Chemical Information and Computer Sciences, 44, 618–625.

    Article  Google Scholar 

  • Bubley, R., & Dyer, M. (1999). Faster random generation of linear extensions. Discrete Mathematics, 201, 81–88.

    Article  Google Scholar 

  • Chen, Z., & Shen, L. (2003). Two-layer ranked set sampling with concomitant variables. The Journal of Statistical Planning and Inference, 115, 45–57.

    Article  Google Scholar 

  • Chen, Z., Bai, Z., & Sinha, B. (2004). Ranked set sampling: Theory and applications. Lecture notes in statistics. New York: Springer.

    Google Scholar 

  • Cochran, W. G. (1953). Sampling techniques. Oxford: Wiley.

    Google Scholar 

  • Deville, J. C., & Sarndal, C. E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87, 376–382.

    Article  Google Scholar 

  • Deng, L., & Chhikara, R. (1990). On the Ratio and Regression Estimation in Finite Population Sampling. The American Statistician, 44(4), 282–284.

    Google Scholar 

  • Deville, J. C., & Tille, Y. (2004). Efficient balanced sampling: The cube method. Biometrika, 91, 893–912.

    Article  Google Scholar 

  • Dumicic, K. (2011). Representative samples. In M. Lovric (Ed.), International encyclopedia of statistical science. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Fattore, M., & Arcagni, A. (2018). A reduced posetic approach to the measurement of multidimensional ordinal deprivation. Social Indicators, 136(3), 1053–1070.

    Article  Google Scholar 

  • Hajek, J. (1959). Optimum strategy and other problems in probability sampling. Casopis pro Pestovani Matematiky, 84, 387–423.

    Article  Google Scholar 

  • Kruskal, W., & Mosteller, F. (1979a). Representative sampling, I: Non-scientific literature. International Statistical Review, 47, 13–24.

    Article  Google Scholar 

  • Kruskal, W., & Mosteller, F. (1979b). Representative sampling, II: Scientific literature, excluding statistics. International Statistical Review, 47, 111–127.

    Article  Google Scholar 

  • Kruskal, W., & Mosteller, F. (1979c). Representative sampling, III: The current statistical literature. International Statistical Review, 47, 245–265.

    Article  Google Scholar 

  • Kruskal, W., & Mosteller, F. (1980). Representative sampling, IV: The history of the concept in statistics. International Statistical Review, 48, 169–195.

    Article  Google Scholar 

  • Lih-Yuan, D., & Raj, C. (1990). On the ratio and regression estimation in finite population sampling. The American Statistician, 44, 282–284.

    Google Scholar 

  • MacEachern, S. N., Stasny, E. A., & Wolfe, D. A. (2004). Judgement post-stratification with imprecise ranking. Biometrics, 60, 207–215.

    Article  Google Scholar 

  • McIntyre, G. A. (1952). A method of unbiased selective sampling using ranked sets. Australian Journal of Agricultural Research, 3, 385–390.

    Article  Google Scholar 

  • Panahbehagh, B. (2020). Stratified and ranked composite sampling. Communications in Statistics – Simulation and Computation, 49(2), 504–515.

    Article  Google Scholar 

  • Panahbehagh, B., Bruggemann, R., & Salehi, M. (2020). Sampling of multiple variables based on partial order set theory. arXiv:1906.11020v2.

    Google Scholar 

  • Panahbehagh, B., Bruggemann, R., Parvardeh, A., Salehi, M., & Sabzalian, M. R. (2018). An unbalanced ranked-set sampling method to get more than one sample from each set. The Journal of Survey Statistics and Methodology, 6(3), 285–305.

    Article  Google Scholar 

  • Patil, G. P., Sinha, A. K., & Taillie, C. (1994). Ranked set sampling for multiple characteristics. International Journal of Ecology and Environmental Sciences, 20, 94–109.

    Google Scholar 

  • Rao, J. N. K. (2005). Interplay between sample survey theory and practice: An appraisal. Survey Methodology, 21(3), 117–138.

    Google Scholar 

  • Rao, J. N. K., & Fuller, W. A. (2017). Sample survey theory and methods: Past, present, and future directions. Survey Methodology, 43(2), 145–160.

    Google Scholar 

  • Sarndal, C. E., Swensson, B., & Wretman, J. (2003). Model assisted survey sampling. New York: Springer.

    Google Scholar 

  • Takahasi, K., & Wakimoto, K. (1968). On unbiased estimates of the population mean based on the sample stratified by means of ordering. Annals of the Institute of Statistical Mathematics, 20, 1–31.

    Article  Google Scholar 

  • Tille, Y., & Wilhelm, M. (2017). Probability sampling designs: Principles for choice of design and balancing. Statistical Science, 32(2), 176–189.

    Article  Google Scholar 

  • Wang, Y. G., Chen, Z. H., & Liu, J. (2004). General ranked set sampling with cost considerations. Biometrics, 60, 556–561.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bardia Panahbehagh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panahbehagh, B., Bruggemann, R. (2021). Introduction into Sampling Theory, Applying Partial Order Concepts. In: Bruggemann, R., Carlsen, L., Beycan, T., Suter, C., Maggino, F. (eds) Measuring and Understanding Complex Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-59683-5_10

Download citation

Publish with us

Policies and ethics