Skip to main content

Collaborative Learning Using LSTM-RNN for Personalized Recommendation

  • Conference paper
  • First Online:
Services Computing – SCC 2020 (SCC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12409))

Included in the following conference series:

Abstract

Today, the ability to track users’ sequence of online activities, makes identifying their evolving preferences for recommendation practicable. However, despite the myriad of available online activity information, most existing time-based recommender systems either focus on predicting some user rating, or rely on information from similar users. These systems, therefore, disregard the temporal and contextual aspects of users preferences, revealed in the rich and useful historical sequential information, which can potentially increase recommendation accuracy. In this work, we consider such rich, user online activity sequence, as a complex dependency of each user’s consumption sequence, and combine the concept of collaborative filtering with long short-term memory recurrent neural network (LSTM-RNN), to make personalized recommendations. Specifically, we use encoder-decoder LSTM-RNN, to make sequence-to-sequence recommendations. Our proposed model builds on the strength of collaborative filtering while preserving individual user preferences for personalized recommendation. We conduct experiments using Movielens (https://grouplens.org/datasets/movielens) dataset to evaluate our proposed model and empirically demonstrate that it improves recommendation accuracy when compared to state-of-the-art recommender systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://grouplens.org/datasets/movielens.

References

  1. Quadrana, M., Cremonesi, P., Jannach, D.: Sequence-aware recommender systems. CoRR abs/1802.08452 (2018)

    Google Scholar 

  2. Fletcher, K.K.: A method for dealing with data sparsity and cold-start limitations in service recommendation using personalized preferences. In: 2017 IEEE International Conference on Cognitive Computing (ICCC), pp. 72–79, June 2017

    Google Scholar 

  3. Fletcher, K.K., Liu, X.F.: A collaborative filtering method for personalized preference-based service recommendation. In: Proceedings of the 2015 IEEE International Conference on Web Services, pp. 400–407, June 2015

    Google Scholar 

  4. Devooght, R., Bersini, H.: Collaborative filtering with recurrent neural networks. CoRR abs/1608.07400 (2016)

    Google Scholar 

  5. Kwapong, B.A., Anarfi, R., Fletcher, K.K.: Personalized service recommendation based on user dynamic preferences. In: Ferreira, J.E., Musaev, A., Zhang, L.J. (eds.) Services Computing - SCC 2019, pp. 77–91. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  6. Ko, Y.J., Maystre, L., Grossglauser, M.: Collaborative recurrent neural networks for dynamic recommender systems. In: Journal of Machine Learning Research: Workshop and Conference Proceedings, vol. 63 (2016)

    Google Scholar 

  7. Donkers, T., Loepp, B., Ziegler, J.: Sequential user-based recurrent neural network recommendations. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 152–160. ACM (2017)

    Google Scholar 

  8. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press (2009)

    Google Scholar 

  9. Weston, J., Bengio, S., Usunier, N.: WSABIE: scaling up to large vocabulary image annotation. IJCAI 11, 2764–2770 (2011)

    Google Scholar 

  10. Park, S., Kim, B., Kang, C.M., Chung, C.C., Choi, J.W.: Sequence-to-sequence prediction of vehicle trajectory via LSTM encoder-decoder architecture. arXiv preprint arXiv:1802.06338 (2018)

  11. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  12. Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., Hinton, G.: Grammar as a foreign language. In: Advances in Neural Information Processing Systems, pp. 2773–2781 (2015)

    Google Scholar 

  13. Chu, Y., Huang, F., Wang, H., Li, G., Song, X.: Short-term recommendation with recurrent neural networks. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 927–932. IEEE (2017)

    Google Scholar 

  14. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015)

  15. Liu, K., Shi, X., Natarajan, P.: Sequential heterogeneous attribute embedding for item recommendation. In: 2017 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 773–780, November 2017

    Google Scholar 

  16. Smirnova, E., Vasile, F.: Contextual sequence modeling for recommendation with recurrent neural networks. arXiv preprint arXiv:1706.07684 (2017)

  17. Balakrishnan, A., Dixit, K.: DeepPlaylist: using recurrent neural networks to predict song similarity (2016)

    Google Scholar 

  18. Yang, Q., He, Z., Ge, F., Zhang, Y.: Sequence-to-sequence prediction of personal computer software by recurrent neural network. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 934–940, May 2017

    Google Scholar 

  19. Bansal, T., Belanger, D., McCallum, A.: Ask the GRU: multi-task learning for deep text recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 107–114. ACM (2016)

    Google Scholar 

  20. Wu, S., Ren, W., Yu, C., Chen, G., Zhang, D., Zhu, J.: Personal recommendation using deep recurrent neural networks in NetEase. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pp. 1218–1229.IEEE (2016)

    Google Scholar 

  21. Quadrana, M., Karatzoglou, A., Hidasi, B., Cremonesi, P.: Personalizing session-based recommendations with hierarchical recurrent neural networks. In: Proceedings of the Eleventh ACM Conference on Recommender Systems, pp. 130–137. ACM (2017)

    Google Scholar 

  22. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  23. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  24. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)

    Article  MathSciNet  Google Scholar 

  25. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

  26. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-Score and ROC: a family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439_114

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A. Kwapong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwapong, B.A., Anarfi, R., Fletcher, K.K. (2020). Collaborative Learning Using LSTM-RNN for Personalized Recommendation. In: Wang, Q., Xia, Y., Seshadri, S., Zhang, LJ. (eds) Services Computing – SCC 2020. SCC 2020. Lecture Notes in Computer Science(), vol 12409. Springer, Cham. https://doi.org/10.1007/978-3-030-59592-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59592-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59591-3

  • Online ISBN: 978-3-030-59592-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics